
Qucs

Work Book

Thierry Scordilis

Mike Brinson

Gunther Kraut

Stefan Jahn
Chris Pitcher

Copyright c© 2005 Thierry Scordilis <thierry.scordilis@free.fr>
Copyright c© 2006, 2007 Mike Brinson <mbrin72043@yahoo.co.uk>
Copyright c© 2006 Gunther Kraut <gn.kraut@online.de>
Copyright c© 2005, 2006, 2007 Stefan Jahn <stefan@lkcc.org>
Copyright c© 2005 Chris Pitcher <ozjp@chariot.net.au>

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation. A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

Contents

1 General Design Flow 10

2 Getting started with Qucs 11
2.1 Introduction . 11
2.2 Tool suite . 13
2.3 Setting up schematics . 14

2.3.1 DC simulation - A voltage divider 16
2.3.2 DC simulation - Characteristics of a transistor 31
2.3.3 AC simulation - Transit frequency of a bipolar transistor 40
2.3.4 AC simulation - A simple RC highpass 44
2.3.5 Transient simulation - Amplification of a bipolar transistor 47
2.3.6 S-parameter simulation - Transit frequency of a BJT 49
2.3.7 S-parameter and AC simulation - A Bessel band-pass filter 52

3 Understanding RF Data Sheet Parameters 58
3.1 Introduction . 58
3.2 DC specifications . 59
3.3 Maximum ratings and thermal characteristics 59

4 DC Analysis, Parameter Sweep and Device Models 60
4.1 DC Static Circuits . 60
4.2 When Things Vary . 62
4.3 Models and Parameters . 68

5 Getting Started with Digital Circuit Simulation 72
5.1 Introduction . 72
5.2 Simulating simple digital circuits . 73

5.2.1 Notes on drawing digital schematics 74
5.3 VHDL code generated by Qucs . 75
5.4 Truth tables . 77
5.5 Digital subcircuits . 80
5.6 Building a digital component library . 84

5.6.1 Logic zero . 84
5.6.2 Logic one . 84
5.6.3 G2bit - 2 bit pattern generator . 84
5.6.4 G4bit - 4 bit pattern generator . 85

2

5.6.5 MUX2to1 - 2 input to 1 output multiplexer 86
5.6.6 MUX4to1 - 4 input to 1 multiplexer 87
5.6.7 2 bit adder . 88

5.7 Subcircuit VHDL code generated by Qucs 88
5.7.1 Gen2bit . 88
5.7.2 2 bit adder . 89
5.7.3 Notes on subcircuit VHDL generation 90

5.8 Subcircuit nesting: A more complex design example 91
5.8.1 4 bit RTL design . 92

5.9 Update number one: May 2006 . 96
5.9.1 Bugs, corrections and small changes to the Qucs digital simulation

code . 96
5.9.2 New digital simulation features . 97
5.9.3 Limitations . 99
5.9.4 Using the Qucs VHDL editor . 100
5.9.5 Linking VHDL entity-architecture models to Qucs schematic device

symbols . 108
5.9.6 Generating VHDL code from Qucs schematic drawings 113

5.10 Update number two: September 2006 . 122
5.10.1 Simulating VHDL code using Qucs and FreeHDL. 123
5.10.2 VHDL predefined packages and libraries. 126
5.10.3 VHDL simulation code structures. 126
5.10.4 VHDL data types. 129
5.10.5 An example VHDL simulation employing integer signals. 130
5.10.6 Multivalued logic. 130
5.10.7 Run debugging of VHDL simulation code. 138
5.10.8 Testing digital systems using test vectors stored on disk. 146

5.11 End note . 152

6 Transient Domain Flip-Flop Models for Mixed-Mode Simulation 153
6.1 Introduction . 153
6.2 Latches and flip-flops . 153
6.3 The gated D latch . 154
6.4 Edge-triggered D type flip-flop . 157
6.5 The edge-triggered JK flip-flop . 159
6.6 The edge-triggered T flip-flop . 162
6.7 Two example digital circuits . 164
6.8 VHDL code for the transient domain flip-flop models 168
6.9 Generating a library of mixed-mode digital components 171
6.10 Digital component propagation time delays and transient simulation numer-

ical stability . 172
6.11 Mixed-mode example simulations . 174
6.12 End Note . 182

3

7 Modelling Operational Amplifiers 183
7.1 Introduction . 183
7.2 The Qucs built-in operational amplifier model 183
7.3 Adding features to the Qucs OP AMP model 189
7.4 Modular operational amplifier macromodels 189
7.5 A basic AC OP AMP macromodel. 190

7.5.1 The input stage. 190
7.5.2 Voltage gain stage 1. 193
7.5.3 Derivation of voltage gain stage 1 transfer function 193
7.5.4 Output stage. 195
7.5.5 A subcircuit model for the basic AC OP AMP macromodel 195

7.6 A more accurate OP AMP AC macromodel 199
7.6.1 Derivation of voltage gain stage 2 transfer function. 199
7.6.2 Simulating OP AMP open loop differential gain 200

7.7 Adding common mode effects to the OP AMP AC macromodel 202
7.7.1 Simulating OP AMP common-mode effects 203

7.8 Large signal transient domain OP AMP macromodels 207
7.8.1 Slew rate macromodel derivation 207
7.8.2 Modelling OP AMP overdrive and output voltage limiting 211
7.8.3 Modelling OP AMP output current limiting 212

7.9 Obtaining OP AMP macromodel parameters from published device data . 217
7.10 More complete design examples. 217

7.10.1 Example 1: State variable filter design and simulation 217
7.10.2 Example 2: Sinusoidal signal generation with the Wien bridge oscillator219

7.11 Update number one: March 2007 . 228
7.11.1 Building a library component for the modular OP AMP macromodel 228
7.11.2 Changing model parameters: use of the SPICEPP preprocessor . . 228
7.11.3 The Boyle operational amplifier SPICE model 230
7.11.4 Model accuracy . 234
7.11.5 The PSpice modified Boyle model 239

7.12 Constructing Qucs OPAMP libraries . 247
7.13 Extending existing OP AMP models . 249
7.14 End note . 256

8 Modelling the 555 Timer 257
8.1 Introduction . 257
8.2 The Qucs 555 timer model . 258

8.2.1 The trigger comparator macromodel 259
8.2.2 The threshold comparator macromodel 260
8.2.3 The digital logic macromodel . 261
8.2.4 The 555 timer output amplifier macromodel 262
8.2.5 The discharge switch macromodel 263

8.3 Published 555 timer test circuits . 264

4

8.3.1 The 555 timer monostable pulse generator 264
8.3.2 The 555 timer astable pulse oscillator 267
8.3.3 Pulse width modulation . 269
8.3.4 Pulse position modulation . 272

8.4 Multiple 555 timer simulation examples . 273
8.4.1 Sequential pulse train generation 273
8.4.2 Frequency divider circuit . 278

8.5 End note . 281

9 Qucs Simulation of SPICE Netlists 282
9.1 Introduction . 282
9.2 The basic SPICE netlist format . 282
9.3 Defining symbols for Qucs SPICE netlist components 288
9.4 Handling SPICE subcircuits . 290

9.4.1 Subcircuit example 1: a multisection LC delay line 290
9.4.2 Subcircuit example 2: a two section CMOS ring counter 290

9.5 Limitations when converting SPICE netlists 296
9.6 Extending the SPICE netlist language . 296

9.6.1 The SPICEPP preprocessor . 297
9.7 Circuit template models . 299
9.8 Building circuit design equations into netlists 303
9.9 Global nodes . 307
9.10 End Note . 309

10 Biasing a BJT Transistor 311
10.1 Graphical methods . 311

10.1.1 Graphical approach shows trade-offs 313
10.2 Simulation technics . 315

11 BJT Modeling and Verification 316
11.1 choice of transistor . 316
11.2 library creation . 320
11.3 device library verification . 321
11.4 parasitic description of the package . 324
11.5 small signal S parameter verification . 328

12 Power Amplifier Design 333
12.1 Field of interest . 333
12.2 System consideration . 333
12.3 Biasing consideration . 334
12.4 Why thermal design ? . 337

12.4.1 Thermal management . 337
12.5 DC Power dissipation . 339

5

12.6 Small signal analysis . 341

13 Low Noise Amplifier Design 342
13.0.1 System consideration . 342
13.0.2 Choice of transistor . 343
13.0.3 library creation . 343
13.0.4 DC study . 344
13.0.5 SP study . 344
13.0.6 Non linearities study . 344
13.0.7 Possible improvement tips . 344

14 Microstrip Design 345
14.1 10dB Directional Coupler Design . 345

14.1.1 Some boring theory beforehand . 345
14.1.2 Design equations . 347
14.1.3 Applying the design equations . 347
14.1.4 What next? . 347
14.1.5 Verification of the design . 349
14.1.6 Suggested improvements . 354
14.1.7 Remaining thinkabouts . 356

15 Measurement Expressions Reference Manual 357
15.1 Introduction . 357
15.2 Using Measurement Expressions . 357

15.2.1 Entering Measurement Expressions 358
15.2.2 Changing Measurement Expressions 359
15.2.3 Syntax of Measurement Expressions 359

15.3 Functions Syntax and Overview . 362
15.3.1 Functions Reference Format . 363
15.3.2 Functions Listed by Category . 364

15.4 Math Functions . 369
15.4.1 Vectors and Matrices . 369
15.4.2 Elementary Mathematical Functions 379
15.4.3 Data Analysis . 436

15.5 Electronics Functions . 463
15.5.1 Unit Conversion . 463
15.5.2 Reflection Coefficients and VSWR 467
15.5.3 N-Port Matrix Conversions . 472
15.5.4 Amplifiers . 480

16 Component, compact device and circuit modelling using symbolic equations 494
16.1 Introduction . 494
16.2 Qucs electronic device and circuit modelling 494

6

16.3 Extending circuit simulation capabilities with equations 499
16.3.1 Low pass active filter design with embedded design equations 500

16.4 Introduction to Qucs subcircuit parameters 507
16.5 Building universal macromodels using subcircuits and parameters 510
16.6 More complex nested subcircuit models . 516
16.7 Introduction to equation defined devices (EDD) 517
16.8 The Qucs EDD component . 519
16.9 Modelling nonlinear resistors . 522
16.10Modelling nonlinear capacitors and inductors 524
16.11Compact device modelling using EDD . 527
16.12Constructing EDD compact device models and circuit macromodels 535
16.13End Note . 535
16.14Appendix A: Qucs constants, operators and functions 536
16.15Appendix B: Constructing subcircuits with parameters 538

16.15.1 Enter the series resonance circuit and add input and output pins . . 538
16.15.2 Change the component names to Ls, Cs and Rs 539
16.15.3 Construct symbol for new subcircuit 540
16.15.4 Add the names of the subcircuit parameters to the LCR symbol . . 541
16.15.5 Test the LCR subcircuit . 542

7

Introduction

Important note and warning

You should take into account the fact that this document is written on the fly, so some
mistakes are still possible, and the author is not responsible for any damage due to the use
of this document.

This document is intended to be a work book for RF and microwave designers. Our
intention is not to provide an RF course, but some touchy RF topics. The goal is to insist
on some design rules and work flow for RF desings using CAD programs. This work flow
will be handled through different chapters on quite different subjects.

Work book content

In this workbook, we will pass through some regular tasks. But there is a progression on
the explanations, and due to the fact that we have to cover a huge amount of information,
some key point will be shown ony once, so it is recommanded to read the chapters in order.

This work book will include:

Work flow: the regular process of project design is shown,

Understanding RF data sheets: a usual task, that could be hell, could turn a project
into a nightmare,

BJT Modeling: after having chosen a device, we always need to use in the CAD, and
usually this device does not exits in the CAD... how to create it and verify

DC static: since all active devices have to be biased...

PA Desgin: the active component is found, and a small amplifier is designed without to
many constraints

LNA Design: a more constraint design using more rules, stability, noise etc.

oscillator design: a procedure that is typical from CAD issues, handling non usual pro-
cedure,

vco design: a normal evolution from a oscillator,

8

detector: a design difficult to handle.

more will come . . .

9

1 General Design Flow

Knowing the fact that you are familiar with the regular design flow of RF, microwave
circuits and or systems, we need to clarify how Qucs is intended to be used for this type
of circuits design.

As an RF research engineer, I’m still having some new graduate students. And I’m always
having some problems with the new methods that are teached. Usually they arrive with
some knowledge on CAD programs, but they do not really know how to dimension their
design. They use only the optimizer to replace their thinking. What a pity! Of course not
all of them are like this, but it is a common trend. By since work book I want to show
that there are some rules to follow, and that a design can be calculated, and that it will
not work due to a wizard!

For the experts, nothing very new herein, but only some particular use of Qucs, since the
design rules are the one that you could have on the workbench using a paper and a pen.

The author.

Regular document organisation

We will try to have always the same kind of organization inside the different chapters, that
is to say:

a main topic: in order to say in which field of activity this design is intended to be used

a block specification: in order to know what we have to do. This task will not be
explain at a first glance, since it is not the goal of this document (we’re not dealing
with system specification, it could be if the component present in Qucs are increased
. . . so why not in further version of this document.)

DC explanation: if the design includes a DC part, then we should provide the DC study
including thermal aspect if needed.

functional design: in order to explain how this functionality is designed either in general
or by the mean of Qucs. The second aspect should be always kept in mind. Ev-
erything might not be straightforward on other CAD programs, and therefore not
considerated herein.

Hoping that these explanations clarifies the goal of this document.

10

2 Getting started with Qucs

2.1 Introduction

The following sections are meant to give an overview about what the Qucs software can
be used for and how it is used to achieve this.

Qucs is free software licensed under the General Public License (GPL). It can be down-
loaded from http://qucs.sourceforge.net and comes with the complete source code.
Every user of the program is allowed and called upon (on a voluntary basis of course) to
modify it for their purposes as long as changes are made public. Contact the authors to
verify them and finally to incorporate it into the software.

The software is available for a variety of operating systems including

• GNU/Linux

• Windows

• FreeBSD

• MacOS

• NetBSD

• Solaris

On the homepage you’ll find the source code to build and install the software. Build
instructions are given. Also links for binary packages for certain distributions (e.g. Debian,
SuSE, Fedora) can be found.

Once the software has been successfully installed on your system you can start it by issuing
the

qucs

command or by clicking the appropriate icon on your start menu or desktop. Qucs is a
multi-lingual program. So depending on your system’s language settings the Qucs graphical
user interface (GUI) appears in different languages.

11

http://qucs.sourceforge.net

Figure 2.1: Qucs has been started

On the left hand side you find the Projects folder opened. Usually the projects folder will
be empty if you use Qucs for the first time. The large area on the right hand side is the
schematic area. Above you can find the menu bar and the toolbars.

In the File → Application Settings menu the user can configure the language and
appearance of Qucs.

12

Figure 2.2: Application setting dialog

To take effect of the language and font settings the application must be closed either via
the Ctrl + Q shortcut or the File → Exit menu entry. Then start Qucs again.

2.2 Tool suite

Qucs consists of several standalone programs interacting with each other through the GUI.
There are

• the GUI itself,

The GUI is used to create schematics, setup simulations, display simulation results,
writing VHDL code, etc.

• the backend analogue simulator,

The analogue simulator is a command line program which is run by the GUI in order
to simulate the schematic which you previously setup. It takes a netlist, checks it for
errors, performs the required simulation actions and finally produces a dataset.

• a simple text editor,

The text editor is used to display netlists and simulation logging informations, also to
edit files included by certain components (e.g. SPICE netlists, or Touchstone files).

• a filter synthesis application,

The program can be used to design various types of filters.

• a transmission line calculator,

The transmission line calculator can be used to design and analyze different types of
transmission lines (e.g. microstrips, coaxial cables).

13

• a component library,

The component library manager holds models for real life devices (e.g. transistors,
diodes, bridges, opamps). It can be extended by the user.

• an attenuator synthesis application,

The program can be used to design various types of passive attenuators.

• a command line conversion program

The conversion tool is used by the GUI to import and export datasets, netlists and
schematics from and to other CAD/EDA software. The supported file formats as
well as usage information can be found on the manpage of qucsconv.

Additionally the GUI steers other EDA tools. For digital simulations (via VHDL) the
program FreeHDL (see http://www.freehdl.seul.org) is used. And for circuit opti-
mizations ASCO (see http://asco.sourceforge.net) is configured and run.

2.3 Setting up schematics

The following sections will enable the user to setup some simple schematics. For this we
first create a new project named “WorkBook”. Either press the New button above the
projects folder or use the menu entry Project→ New Project and enter the new project
name.

Figure 2.3: New project dialog

Confirm the dialog by pressing the “Create” button. When done, the project is opened and
Qucs switches to the Content tab.

14

http://www.freehdl.seul.org
http://asco.sourceforge.net

Figure 2.4: New empty project has been created

In the Content tab you will find all data related to the project. It contains your schematics,
the VHDL files, data display pages, datasets as well as any other data (e.g. datasheets).
On the right hand side an “untitled” and empty schematic window is displayed.

Now you can start to edit the schematic. The available components can be found in the
Components tab.

15

Figure 2.5: Components tab

In fig. 2.5 is shown when clicking the Components tab. There are lumped components
(e.g. resistors, capacitors), sources (e.g. DC and AC sources), transmission lines (e.g. mi-
crostrip, coaxial cable, twisted pair), nonlinear components (e.g. ideal opamp, transistors),
digital components (e.g. flip-flops), file components (e.g. Touchstone files, SPICE files),
simulations (e.g. AC or DC analysis), diagrams (e.g. cartesian or polar plot) and paintings
(e.g. texts, arrows, circles).

Each of the components can placed on the schematic by clicking it once, then move the
mouse cursor onto the schematic and click again to put it on its final position. During the
mouse move you can right click in order to rotate the component into its final position.
The user can also drag-and-drop the components.

2.3.1 DC simulation - A voltage divider

The DC analysis is a steady state analysis. It computes the node voltage as well as branch
currents of the complete circuit. The given circuit in fig. 2.6 is going to divide the voltage
of a DC voltage source according to the resistor ratio.

16

Figure 2.6: Components of the voltage divider place in the schematic area

Wiring components

Now you need to connect the components appropriately. This is done using the wiring
tool. You enable the wiring mode either by clicking the wire icon or by pressing the Ctrl

+ E shortcut. Left clicking on the components’ ports (small red circles) starts a wire,
clicking on a second port finishes the wire. In order to change the orientation of the wire
right click it. You can leave the wiring mode by the pressing Esc key.

17

Figure 2.7: Components of the voltage divider appropriately wired

For any analogue simulation (including the DC simulation) there is a reference potential
required (for the nodal analysis). The ground symbol can be found in the Components
tab in the lumped components category. The user can also choose the ground symbol
icon or simply press the Ctrl + G shortcut. In the given circuit in fig. 2.8 the ground
symbol is placed at the negative terminal of the DC voltage source.

Placing simulation blocks

The type of simulation which is performed must also be placed on the schematic. You
choose the “DC simulation” block which can be found in the Components tab in the
simulations category.

18

Figure 2.8: Ground symbol as well as DC simulation in place

Labelling wires

If you want the voltage between the two resistors (the divided voltage) be output in the
dataset after simulation the user need to label the wire. This is done by double clicking
the wire and given an appropriate name. Wire labelling can also be issued using the icon
in the toolbar, by pressing the Ctrl + L shortcut or by choosing the Insert → Wire
Label menu entry.

Figure 2.9: Node label dialog

The dialog is ended by pressing the Enter key of pressing the “Ok” button.

Now the complete schematic for the voltage divider is ready and can be saved. This can
by achieved by choosing the File → Save menu entry, clicking the single disk icon or by

19

pressing the Ctrl + S shortcut.

Figure 2.10: File save dialog

20

Figure 2.11: Final voltage divider schematic

The final DC voltage divider is shown in fig. 2.11.

Issuing a simulation

The schematic can now be simulated. This is started by choosing the Simulation →
Simulate menu entry, clicking the simulation button (the gearwheel) or by pressing the
F2 shortcut.

21

Figure 2.12: Empty data display after simulation finished

After the simulation has been finished the related data display is shown (see fig.2.12). Also
the Components tab has changed its category to “diagrams”.

Placing diagrams

Choose the tabular (list of values) diagram and place it on the data display page. After
dropping the tabular, the diagram dialog appears as shown in fig. 14.7.

22

Figure 2.13: Diagram dialog

By double clicking the divided.V the graph (i.e. values in a tabular plot) is added to
the diagram. Beside the node voltage divided.V also the current through the DC voltage
source V1.I is available. Only items listed in the dataset list can be put into the graph.

Available dataset items

Depending on the type of simulation the user performed you find the following types of
items in the dataset.

• node.V – DC voltage at node node

• name.I – DC current through component name

• node.v – AC voltage at node node

• name.i – AC current through component name

• node.vn – AC noise voltage at node node

• name.in – AC noise current through component name

• node.Vt – transient voltage at node node

• name.It – transient current through component name

• S[1,1] – S-parameter value

23

Please note that all voltages and currents are peak values and all noise voltages are RMS
values at 1Hz bandwidth.

Figure 2.14: Diagram dialog with the node voltage added

Depending on the type of graph you have various options to choose for the graph. For
a tabular graph there is the the number precision as well as type of number notation
(important for complex values). Press the “Ok” button to close the dialog.

24

Figure 2.15: Data display with tabular graph

In the tabular graph you see now the value of the node voltage divided.V which is 0.5V.
That was expected since the values of the resistors are equally sized and the DC voltage
source produces 1V.

Congratulations! You made your first successful simulation using Qucs.

Changing component properties

If you want to change the resistor ratio then switch back to your schematic either by clicking
on the divider.sch tab, by pressing the F4 shortcut or by choosing the Simulation →
View Data Display/Schematic menu entry. Afterwards double click the R1 resistor.
This opens the component property dialog shown in fig. 2.16.

25

Figure 2.16: Component property dialog for the R1 resistor

In the component property dialog all the properties of a given component can be edited.
A short description is given as well as there is a checkbox for each property display in
schematic which can be used to add the property name and value on the schematic (or
to hide it).

Allowed property values For component values either standard (1000), scientific (1e-3)
or an engineering (1k) number notation can be chosen. Some units are also allowed. The
units are

• Ohm – resistance / Ω

• s – time / Seconds

• S – conductance / Siemens

• K – temperature / Kelvin

• H – inductance / Henry

• F – capacitance / Farad

• Hz – frequency / Hertz

• V – voltage / Volt

• A – current / Ampere

• W – power / Watt

• m – length / Meter (not usable standalone, see paragraph below)

26

The available engineering suffixes are

• dBm – 10 · log (x/0.001)

• dB – 10 · log (x)

• T – 1012

• G – 109

• M – 106

• k – 103

• m – 10−3

• u – 10−6

• n – 10−9

• p – 10−12

• f – 10−15

• a – 10−18

Please note that all units and engineering suffixes are case sensitive and also note the
conflict in m. When specifying one millimeter you can use 1mm. One meter (1m) cannot
be specified and will always be interpreted as one milli (engineering notation).

Now you can change the resistor value to 1Ω, see fig. 2.17.

Figure 2.17: Component property dialog for the R1 resistor

Press the “OK” button to close the dialog. You will get the following schematic.

27

Figure 2.18: Value of resistor R1 changed

In order to change the value of the resistor R2 you can just click on the 50 Ohm value
directly on the schematic and edit the value.

Figure 2.19: Change value of resistor R2 directly on schematic

Change the value to “3” which will give a resistor ratio of 3/(1 + 3) = 0.75. Now you have
the following schematic.

28

Figure 2.20: Value of resistor R2 changed

Diagrams are not limited to be placed on the data display, they can also reside on the
schematic directly. Thus you can place again now a tabular diagram on the schematic and
add the divided.V value. The diagram will show the result from the previous simulation.

Changing document properties

If you do not want Qucs to change automatically to the associated data display you can
change the behaviour in the document setting dialog. You can go to the document settings
dialog by right clicking on free space on the schematic area and choose the Document
Settings menu item in the context menu which pops up or by choosing the File →
Document Settings menu entry.

29

Figure 2.21: Document settings dialog

In the dialog you uncheck the open data display after simulation item. Press the
“OK” button to apply the change. If you now resimulate the schematic by pressing the
F2 shortcut the “Qucs Simulation Messages” dialog window opens and can be left by
pressing Esc . The tabular diagram now show the new value for divided.V.

30

Figure 2.22: Divider schematic after new simulation

2.3.2 DC simulation - Characteristics of a transistor

We are now going ahead and will setup schematics for some characteristic curves of a
bipolar transistor using DC simulation and the parameter sweep.

31

I1I=IbV1U=10ParametersweepSW1Sim=DC1Type=logParam=IbStart=10nStop=10mPoints=101dcsimulationDC1
Q2N4401_1

Figure 2.23: Swept DC simulation setup

In the schematic in fig. 2.23 there is a bipolar transistor placed in a common emitter
configuration. Additionally a parameter sweep has been placed. Please note the Sim
property of the parameter sweep. It contains the instance name of the DC simulation
DC1 which is going to be swept. The parameter which is swept is Ib (the base current)
and is put into the Param property of the parameter sweep. The parameter Ib is also put
into the I property of the DC current source I1.

Using the component library

The bipolar transistor has been taken from the component library. You can start the
program by choosing the Tools → Component Library menu entry or by pressing the
Ctrl + 4 shortcut.

32

Figure 2.24: Component library tool

When choosing the“Transistor”category with the combobox you find the“2N4401”transis-
tor. By clicking the “Copy to clipboard” button the component is available in the clipboard
and can be inserted in the schematic using the Ctrl + V shortcut or by choosing the
Edit → Paste menu entry. The component can also by dragged onto the schematic by
clicking on the symbol in the library tool.

So what do we want to simulate actually? It is the current transfer curve of the bipolar
transistor. The input current (at the base) is given by the swept parameter Ib. The output
current (at the collector) flows through the DC voltage source V1. The current transfer
curve is:

βDC = f (IC) = IC/IB

The current through the voltage source V1 is the collector current flowing out of the
transistor.

Placing equations on the schematic

In order to compute the necessary values for the transfer curve we need to place some
equations on the schematic. This is done by clicking the equation icon or by choosing the
Insert → Insert Equation menu entry. When double clicking the equation component
you can edit the equations to be computed.

33

Figure 2.25: Equation dialog

In the upper edit box you enter the name of the equation and in the lower one the compu-
tation formula. The resulting schematic is shown in fig. 2.26.

34

I1I=IbV1U=10ParametersweepSW1Sim=DC1Type=logParam=IbStart=10nStop=10mPoints=101dcsimulationDC1
Q2N4401_1
EquationEqn1Ic=:V1.IBeta=Ic/IbBeta_vs_Ic=PlotVs(Beta,Ic)

Figure 2.26: Swept DC simulation setup with equations

Note that three equations have been added. The first one Ic=-V1.I is the collector current
flowing into the transistor (current though voltage sources flow from the positive terminal
to the negative terminal). The equation Beta=Ic/Ib computes the current gain and
finally Beta vs Ic=PlotVs(Beta,Ic) changes the data dependency of the current gain
to be the collector current. The original data dependency is the swept parameter Ib.

The internal help system

The full list of available functions in the equation solver can be seen in the internal help
system. It is started by pressing the F1 shortcut or by choosing the Help→Help Index
menu entry. In the sidebar choose the“Short Description of mathematical Functions”entry.

35

Figure 2.27: Internal help system

The help can be closed using the Ctrl + Q shortcut.

Configuring cartesian diagrams

In fig. 2.28 the final simulation result is shown. In the diagram dialog the Beta vs Ic
dataset entry was chosen.

36

1e�81e�71e�61e�51e�41e�30.010.110100200
300
IcBeta_vs_Ic

Figure 2.28: Simulation result

Additionally the x-axis has been chosen to be logarithmic. The x-axis label is Ic.

Figure 2.29: Editing diagram properties

Working with markers in diagrams

The current gain curve in diagram in fig. 2.28 shows a maximum value. If you want to
know the appropriate values it is possible to use markers for this purpose.

37

1e�81e�71e�61e�51e�41e�30.010.110100200
300
IcBeta_vs_IcVersus.0001:0.0339Beta_vs_Ic:246Versus.0001:0.0339Beta_vs_Ic:246

Figure 2.30: Cartesian diagram with marker

This is achieved by pressing the Ctrl + B shortcut, clicking the marker icon or choosing
the Insert→ Set Marker on Graph menu entry. Then click on the diagrams curve you
want to have the marker at. If the marker is selected you can move it by pressing the arrow
keys ← , → and ↑ or ↓ for multi-dimensional graphs.

Figure 2.31: Marker dialog

Double clicking the marker opens the marker dialog. There you can configure the precision
as well as the number notation of the displayed values.

A multi-dimensional sweep

Now we are going to create a schematic for the output characteristics of the bipolar tran-
sistor. The characteristic curve is defined as follows:

IC = f (IB, VCE)

Thus it is necessary to modify the schematic from the previous sections a bit.

38

I1I=IbV1U=VceParametersweepSW1Sim=DC1Type=linParam=VceStart=0Stop=4Points=81dcsimulationDC1
Q2N4401_1
EquationEqn1Ic=:V1.I

ParametersweepSW2Sim=SW1Type=linParam=IbStart=0.1mStop=0.9mPoints=5
Figure 2.32: Sweep setup for the output characteristics

A second parameter sweep has been added. The first order sweep is Vce specified in
the parameter sweep SW1. The Sim parameter points to the instance name of the DC
simulation DC1. The second order sweep is Ib specified in the parameter sweep SW2.
The Sim parameter of this second sweep points to the instance name of the first sweep
SW1. The first order sweep variable Vce is put into the U property of the DC voltage
source V1.

0123400.050.1
0.150.2
Vce

IcVce:3Ib:0.0005Ic:0.10483Vce:3Ib:0.0005Ic:0.10483
Figure 2.33: Output characteristics of a NPN bipolar transistor

39

2.3.3 AC simulation - Transit frequency of a bipolar transistor

In the next section we are going to determine the transit frequency of the bipolar transistor
used in the previous DC sections. First a bias point is chosen. In fig. 2.34 the DC setup
was a bit modified. I1I=IbV1U=10ParametersweepSW1Sim=DC1Type=logParam=IbStart=10nStop=10mPoints=101dcsimulationDC1

Q2N4401_1
EquationEqn1Ic=:V1.IBeta=Ic/IbBeta_vs_Ic=PlotVs(Beta,Ic)EquationEqn2Beta_0=diff(Ic,Ib)

Figure 2.34: DC setup for determining a bias point for AC simulation

There is now an additional equation computing the RF current gain for zero frequency
which is Beta 0=diff(Ic,Ib). The equation denotes

βRF (f = 0) =
∂Ic

∂Ib

In fig. 2.35 the DC current gain from fig. 2.30 is plotted versus the base current Ib choosing
Beta in the diagram dialog instead of Beta vs Ic. The appropriate base current shown
in the marker is 140µA.

40

1e�81e�71e�61e�51e�41e�30.010100200
300
IbBetaBeta_0 Ib:0.000138Beta:246Ib:0.000138Beta:246Ib:5.25e�05Beta_0:257Ib:5.25e�05Beta_0:257Ib:0.000138Beta_0:245Ib:0.000138Beta_0:245

Figure 2.35: DC current gain vs. base current

It can be seen that the maximum AC current gain (257 @ 53µA) differs from the maximum
DC gain. Also the AC current gain almostly equals the DC current gain at the base current
for the maximum DC current gain. For maximum RF performance the base current with
the maximum AC current gain could be chosen. But there may be other consideration, e.g.
DC power dissipation, so we choose the bias point with the maximum DC current gain –
arbitrarily.

I1I=IbV1U=10dcsimulationDC1
Q2N4401_1I2I=1uA
EquationEqn1ic=(V1.ibeta=ic/ibib=I2.I

acsimulationAC1Type=logStart=1kHzStop=1GHzPoints=101ParametersweepSW1Sim=AC1Type=listParam=IbValues=[53u;140u;500u]
Figure 2.36: Bias dependent AC simulation setup

In fig. 2.36 is a DC bias dependent AC simulation setup shown. The DC base current Ib is
swept for 53µA, 140µA and 500µA. Additionally the AC simulation block has been placed
on the schematic.

The Sim parameter of the SW1 parameter sweep is set to the instance name of the AC

41

simulation AC1. Qucs automatically “knows” that the DC simulation has to be run before
each AC simulation since it is required to determine the appropriate bias points.

The AC current current source I2 is in parallel to the DC current source and has an AC
amplitude of 1µA. During the AC simulation the DC current source I1 is an ideal open
and the DC voltage source V1 is an ideal short.

In the equations V1.i (mark the small i letter) denotes the AC current through the DC
voltage source V1. The AC base current ib is taken from the input parameter I2.I denoting
the value of the property I of the AC current source I2 (1µA).

After pressing F2 – to start the simulation – the following cartesian diagram can be
placed on the data display page, see fig. 2.37.

1e31e41e51e61e71e81e9050100150
200250300
acfrequency

betaacfrequency:5.25e+03Ib:0.00014beta:245/�0.254°acfrequency:5.25e+03Ib:0.00014beta:245/�0.254°
Figure 2.37: AC current gain of the bipolar transistor

The marker clearly shows for the low frequency range (f → 0) the DC current gain of 246
(for IB = 140µA) which was already determined in fig. 2.35.

In the next AC simulation setup shown in fig. 2.38 the parameter sweep is dropped to
concentrate on the determination of the transit frequency. The transit frequency of a
bipolar transistor denotes the frequency where the AC current gain drops to 1 (0 dB).

fT ← |h21|2 = 1

Expressed in h-parameters of a general two-port the AC current gain is:

βRF = h21 =
i2
i1

∣∣∣∣
v2=0

whereas port 1 is the base and port 2 the collector. The side condition (v2 = 0) is given in
our setup since the DC voltage source is an ideal AC short.

42

I1I=140uAV1U=10dcsimulationDC1
Q2N4401_1I2I=1uA
EquationEqn1ic='V1.ibeta=ic/ibib=I2.I
acsimulationAC1Type=logStart=1kHzStop=1GHzPoints=101
EquationEqn2beta_dB=dB(ic/1e'6)ft=xvalue(beta_dB,0)

Figure 2.38: AC setup for determining the transit frequency

There are two more equations in the setup. One calculates the AC current gain in dB (which
is 20 · log (beta) and the other one is ft=xvalue(beta dB,0). The equation searches for
the nearest given x-value (in this case the frequency) where beta dB approaches 0.number1ft2.884e+08
1e31e41e51e61e71e81e9�20020
40
acfrequencybeta_dBacfrequency:2.88e+08beta_dB:0.0605acfrequency:2.88e+08beta_dB:0.0605

Figure 2.39: Bode plot of the current transfer function

In fig. 2.39 the Bode plot (double logarithmic plot) of the current transfer function of the
bipolar transistor is shown. The current gain is constant up to the corner frequency and
then drops by 20dB/decade. The marker finally denotes where the gain is finally 0dB. The
equation for ft worked correctly as seen in the beside tabular. The transit frequency of the
bipolar transistor in this bias point is approximately 288MHz.

43

2.3.4 AC simulation - A simple RC highpass

Simple circuit AC analysis (circuit frequency response analysis) can be carried out easily
by using the AC Simulation block.

For instance, a simple high pass RC filter can be analyzed by constructing first the
schematic displayed on figure 2.40 which corresponds to a high pass RC network.

Figure 2.40: simple RC high-pass filter schematic

Performing the actual AC analysis is as easy as dragging and dropping an AC Simulation
block available under the Simulations tab as can be seen in figure 2.41.

44

Figure 2.41: AC simulation block placed

Once this is done one must configure the ranges of the simulation analysis by clicking twice
on the AC Simulation box as can be seen in figure 2.42.

45

Figure 2.42: AC simulation block configuration dialog

Finally by pressing F2 the simulation takes places and a graphic report can be generated
by selecting the right plot as seen in the previous sections. The final view of the network
with its respective frequency analysis can be seen on figure 2.43.

46

Figure 2.43: AC simulation results

2.3.5 Transient simulation - Amplification of a bipolar transistor

Based on the schematic in fig. 2.38 we are now going to simulate the bipolar transistor in
the time domain.

47

I1I=140uAV1U=10Q2N4401_1
I2I=1uAf=1kHz transientsimulationTR1Type=linStart=0Stop=5msPoints=201dcsimulationDC1EquationEqn2BetaDC=<V1.I/I1.IEquationEqn1Ic=<V1.ItBetaTR=IcHat/I2.IIcHat=(max(Ic)<min(Ic))/2

Figure 2.44: Transient simulation setup

As shown in fig. 2.44 the transient simulation block was placed on the schematic. Also the
frequency f of the AC current source I2 was set to 1kHz. The start time of the transient
simulation is set to 0 and the stop time to 5ms which will include 5 periods of the input
signal.

The additional DC simulation block is not necessary for the transient simulation but left
there for some result comparison.

The collector current in the equations is denoted by the transient current -V1.It. The
peak value if the collector current is determined by the equation for IcHat. The current
gain during transient simulation is calculated using BetaTR=IcHat/I2.I whereas I2.I
denotes the component property I of the the current source I2 (which is 1µA peak). The
current gain BetaDC is computed for convenience.

The equation blocks imply that the order of appearance of assignments does not matter (e.g.
IcHat is used before computed). The equation solver will take care of such dependencies.

48

number1IcHat0.000245BetaTR245BetaDC246
00.0020.0040.03420.03440
.0346
timeIc

Figure 2.45: Transient results

Fig. 2.45 shows the results of the transient as well as DC simulation. The time dependent
collector current oscillates around its bias point. The current gain of the transient signal
corresponds perfectly with the DC value. That is because a rather small frequency of 1kHz
was chosen.

2.3.6 S-parameter simulation - Transit frequency of a BJT

In the following section the S-parameter simulation is introduced. The S-parameter simu-
lation is – similar to the AC simulation – a small signal analysis in the frequency domain.Q2N4401_1I3I=140uAP1Num=1Z=50C1dcsimulationDC1SparametersimulationSP1Type=logStart=1kHzStop=1GHzPoints=101E

quationEqn2H=twoport(S,'S','H')beta=H[2,1]beta_dB=dB(beta)
V1U=10X1P2Num=2Z=50

Figure 2.46: S-parameter simulation setup for the bipolar transistor

49

Similar to the AC setup in fig. 2.38 the S-parameter setup in fig. 2.46 uses the same biasing.
The setup will be used to determine the transit frequency of the bipolar transistor.

The two AC power sources P1 and P2 are required for a two-port S-parameter simulation.
They can be found in the Components tab in the sources category. Depending on
the number of these kind of sources one-port, two-port and multi-port simulations are
performed. The Num property of the sources determines the location of the matrix entries
in the resulting S-parameter matrix. The Z properties define the reference impedance of
the S-parameters.

The additional DC block C1 at the base node and the bias tee X1 on the collector is used
to decouple the signal path of the biasing DC sources from the internal impedance of the
AC power sources. Also the bias tee ensures that the AC signal from the P2 source is
not shorted by the DC source V1. The same functionality is achieved by the DC current
source I3 at the base. It represents an ideal AC open.

The S-parameter simulation itself is selected by placing the S-parameter block SP1 on the
schematic. The same frequency range is chosen as in the previous AC simulations.

The equations contain a two-port conversion function which convert the resulting S-parameter
S into the appropriate H-parameters H. Again the AC current gain h21 is calculated and
converted in dB.

20406080100
frequency
S[1,1] S[2,1] 0.0050.010.015

frequency
S[2,2] S[1,2]

Figure 2.47: S-parameters of the bipolar transistor

In fig. 2.47 the four complex S-parameters are displayed in two Polar-Smith Combi
diagrams. They represent what can be expected from a typical bipolar transistor.

Using the computed H-parameters we can now compare the S-parameter simulation re-
sults with those of the AC simulation. Fig. 2.48 shows that the curves beta dB of both
simulation setups cover perfectly each other. Again the transit frequency is approximately
288MHz.

50

1e31e41e51e61e71e81e9	20020
40
frequencybeta_dBbjtacft:beta_dBfrequency:2.88e+08beta_dB:0.0605frequency:2.88e+08beta_dB:0.0605

Figure 2.48: Comparison between S-parameter and AC result

The diagram implies that you can compare data curves from different setups. This is
indicated by the bjtacft: prefix. The appropriate dataset file bjtacft.dat can be selected
in the diagram dialog as shown in fig. 2.49.

51

Figure 2.49: Choosing graphs from different datasets

The current S-parameter setup is called bjtsp and the setup shown in fig. 2.38 was called
bjtacft. Please note that only datasets from the same project can be compared with each
other.

2.3.7 S-parameter and AC simulation - A Bessel band-pass filter

The interested reader may have noticed that there seems to be a relationship between AC
analysis and the S-parameter simulation. In the next section we are going to explain this
relationship using a simple filter design.

52

Figure 2.50: Filter synthesis application

In fig. 2.50 the filter synthesis program coming with Qucs is shown. You can start it by the
Ctrl + 2 shortcut or by choosing the Tools → Filter synthesis menu entry. The user
can choose between different types of filters and the filter class (lowpass, highpass, bandpass
or bandstop). Also the appropriate corner frequencies and the order must be configured.
When setup correctly you press the Calculate and put into Clipboard button. The
program will indicate if it was possible to create the appropriate filter schematic. If so, the
application passes the schematic to the system wide clipboard.

Back in the schematic editor you can paste the filter design into the schematic using the
Ctrl + V shortcut or by choosing the Edit → Paste menu entry.

53

L1L=22.83uHC1C=554.9pF
L2L=4.036uHC2C=3.138nFL3L=4.949uHC3C=2.559nF
L4L=8.841uHC4C=1.432nFL5L=1.762uHC5C=7.188nFP2Num=2Z=50P1Num=1Z=50

EquationEqn1dBS21=dB(S[2,1])dBS11=dB(S[1,1])SparametersimulationSP1Type=logStart=100kHzStop=20MHzPoints=200 BesselbandJpassfilter1MHz...2MHz,PIJtype,impedancematching50Ohm
Figure 2.51: Schematic for 5th order Bessel band-pass filter

The schematic shown in fig. 2.51 was automatically created by the filter synthesis program
and can be simulated as is. It contains the LC-ladder network forming the actual filter,
the two S-parameter ports (the AC power sources) as well the S-parameter simulation
block with the appropriate frequencies pre-configured. Additionally there is an equation
computing the transmission and reflection of the filter network in dB.

1e51e61e72e7�100�50
0
frequencydBS21 frequencyS[1,1] frequencyS[2,2]

Figure 2.52: S-parameters of the band-pass filter

The results of the S-parameter simulation are depicted in fig. 2.52. In the logarithmic
cartesian diagram the transmission of the filter clearly shows the band-pass behaviour
between the selected frequencies 1MHz and 2MHz. Additionally the input- and output
reflections can be seen in the two Smith charts.

54

Now two AC setups will be created to calculate the same S-parameters as found in the
previous simulation. In fig. 2.53 the LC-ladder network is unchanged but the S-parameter
ports are replaced by a 50Ω resistor and an AC voltage source in series. Also there is
now an AC simulation block with the same frequency sweep chosen as in the previous
S-parameter simulation.

L1L=22.83uHC1C=554.9pF
L2L=4.036uHC2C=3.138nFL3L=4.949uHC3C=2.559nF
L4L=8.841uHC4C=1.432nFL5L=1.762uHC5C=7.188nFV1U=1V V2U=0VacsimulationAC1Type=logStart=100kHzStop=20MHzPoints=200 EquationEqn2dBS11=dB(S11)dBS21=dB(S21)EquationEqn1a1=(P1.v+Z0*BV1.i)/(2*sqrt(Z0))S11=b1/a1S21=b2/a1Z0=R1.Rb1=(P1.vBZ0*BV1.i)/(2*sqrt(Z0))b2=(P2.vBZ0*BV2.i)/(2*sqrt(Z0))
R2R=50R1R=50 P2P1

acfrequencyS11 1e51e61e72e7B100B50
0
acfrequencydBS21

Figure 2.53: S-parameters at port 1 of the band-pass filter using AC analysis

At this point some theory must be stressed.

55

S-parameters are defined by ingoing (a) and outgoing (b) power waves:

a =
V + Z0 · I

2 ·
√
Z0

b =
V − Z0 · I

2 ·
√
Z0

whereas Z0 denotes the reference impedance the S-parameters will be normalized to. With
this definition the two-port S-parameters can be written as:

S11 =
b1
a1

∣∣∣∣
b2=0

S21 =
b2
a1

∣∣∣∣
b2=0

S22 =
b2
a2

∣∣∣∣
b1=0

S12 =
b1
a2

∣∣∣∣
b1=0

Back at the schematic in fig. 2.53. The amplitude of the AC voltage source V1 is set to 1V
(but can be any other value different from zero) and the side condition b2 = 0 is fulfilled
by setting the amplitude of the AC voltage source V2 to 0V. The additional equations just
calculate the S-parameters as they are defined from the AC simulation values.

Please note the current directions through the AC voltages sources V1.i and V2.i. They
must be considered by the unary minus in the equations.

The results of this simulation again show the filter transmission function as we already
know it from the S-parameter simulation. Also the reflections at port 1 look identical.

In the second schematic shown in fig. 2.54 the second port is handled. The amplitude
of the AC voltage source V2 is set to 1V and the side condition b1 = 0 considered by a
zero AC voltage source V1. Again the appropriate equations are used to compute the two
remaining S-parameters.

The below simulation results again verified that we can perform a partial S-parameter
analysis using the AC simulation block and some additional equations. The diagrams in
fig. 2.54 and fig. 2.52 are identical.

56

L1L=22.83uHC1C=554.9pF
L2L=4.036uHC2C=3.138nFL3L=4.949uHC3C=2.559nF
L4L=8.841uHC4C=1.432nFL5L=1.762uHC5C=7.188nFV2U=1V
R2R=50

acsimulationAC1Type=logStart=100kHzStop=20MHzPoints=200EquationEqn1a2=(P2.v+Z0*@V2.i)/(2*sqrt(Z0))S22=b2/a2S12=b1/a2Z0=R2.Rb1=(P1.v@Z0*@V1.i)/(2*sqrt(Z0))b2=(P2.v@Z0*@V2.i)/(2*sqrt(Z0))Equat
ionEqn2dBS22=dB(S22)dBS12=dB(S12)

V1U=0VR1R=50
P2P1

acfrequencyS22 1e51e61e72e7@100@50
0
acfrequencydBS12

Figure 2.54: S-parameters at port 2 of the band-pass filter using AC analysis

Recapitulating we learned from this example that a S-parameter simulation is a number of
AC simulations with some additional calculation formulas. This is true though the actual
simulation algorithms implemented in Qucs are completely different.

57

3 Understanding RF Data Sheet
Parameters

. . . prepared by Norman E.Dye from Motorola RF Division : AN 11071. Since this AN is
essential to our topics, it is good to make a small reference to it. All AN from Motorola are
a reference is this field. This chapter is only an extract, but the main points are hilighted
herein. . . .
The author.

3.1 Introduction

Data sheets are often the sole source of information about the capability and characteristics
of a product. This is particularly true of unique RF semiconductor devices that are used
by equipment designers all over the world. Because the circuit designer often cannot talk
directly with the factory, he relies on the data sheet for his device information. And for
RF devices, many of the specifications are unique in themselves. Thus it is important
that the user and the manufacturer of RF products speak a common language, what the
semiconductor manufacturer says about his RF device is understood fully by the circuit
designer.

This paper reviews RF transistor and amplifier module parameters from maximum ratings
to functional characteristics. It is divided into five basic sections:

1. DC specifications,

2. power transistors,

3. low power transistor,

4. power modules,

5. linear modules.

Comments are made about critical specifications about how values are determined and
what are their significance.

1This note could be found on old application notes databook from Motorola, if you have one keep them,
it is a real treasure.

58

3.2 DC specifications

Basically, RF transistors are characterized by two types of parameters: DC and functional.
The ”DC” specs consist of breakdown voltage, leakage current, hFE (DC β) and capac-
itances, while the functional specs cover gain, ruggedness, noise figure, Zin and Zout, S
parameters, distortion, etc Thermal characteristics do not fall cleanly into either cate-
gory since thermal resistance and power dissipation can be either DC or AC. Thus we will
treat the spec of thermal resistance as a special specification and give it its own heading
called ”thermal characteristics”.

3.3 Maximum ratings and thermal characteristics

59

4 DC Analysis, Parameter Sweep and
Device Models

4.1 DC Static Circuits

A favourite question in electronics courses used to be:

You have twelve one ohm resistors; you connect them together so that each
resistor lies along the edge of a cube. What is the resistance between opposite
corners of the cube?

The intention may have been to teach soldering, as more than one student solved it by
making just such a cube! These days we can do that without touching the soldering iron;
we simulate the circuit.

Here is my attempt to make a cube in Qucs; anyone is welcome to try and improve it.

60

Figure 4.1: resistor cube schematic

All I did was select resistance in the left hand component window and paste them down,
rotating as necessary, until I had twelve on the schematic. Then I wired two sets of four
into squares, then connected the remaining four between the corners of the squares. Which
I’m sure is topologically the same as a cube.

Which all might seem trivial, but is a good reminder right at the beginning that we are
creating a virtual representation of a physical circuit. Sometimes we have to bend and
squeeze things to get it into a format that our simulator will accept, which leaves us
wondering whether we are working with an accurate representation.

The Rule is: if we can correlate the junctions of our components with those of the real
circuit, we are accurately representing the physical circuit. And, I might add, it is ALWAYS
worth checking that we have done it right; simulate the wrong circuit and it will tell you
lies.

With my cube of resistors accurately drawn, I only have to hit the simulation button and
the tabulated results will show me the voltage at the corner node. As I am forcing a
constant current through the cube from one corner to another, Ohm’s Law tells me that

61

the voltage between those corners will give me the resistance. If I use a current of one amp,
the output voltage will be equal to the resistance in ohms.1

Those with good attention to detail will be complaining about now that I haven’t really
solved the problem, as the question mentioned one ohm resistors while I have used fifty
ohms. Well, yes, I cheated. Which I often do in simulations.

To set all the resistances to the correct value I would have had to open the Properties
Editor window twelve times; here is how it looks...

Figure 4.2: component property dialog

and the highlighted value is inviting me to type in an alternative. I could have done this,
but natural laziness got the better of me. I reasoned that fifty ohms is fifty times too high,
but if I reduced the current source from one amp to twenty milliamps, the output voltage
would be the same. You will find such laziness (or acute perception, depending on is telling
the story!) can save much time and effort.

4.2 When Things Vary

All of which is interesting, but not nearly as interesting as when we start changing things
like the supply voltage and see the effects. For linear devices with a DC supply, the answer
would be: not much. It’s when we introduce non-linear elements that things start to
happen.

1I could tell you the value my simulation gave, but why should I spoil your fun.... go ahead and run
it yourself. If you really want to be thorough you could then also build the circuit and measure the
result.....

62

The simplest non-linear element is the diode, and the question we ask most often about
a diode is: how does the diode forward voltage vary with current? So back to Qucs and
draw this circuit...

This circuit looks deceptively simple, but it introduces a few more features of Qucs, so let’s
go through them in order.

The components were again selected from the left hand window and wired together. Then
the two boxes were selected from the simulations window.

The DC simulation box can be pretty much left as is for now, but take note of the name
of the simulation: DC1.

The Parameter sweep box properties dialog looks like this when opened...

63

The first two items to take note of are the Simulation entry (here DC1, corresponding to
the name of the simulation box) and the Sweep Parameter entry, here entered as Id1.
If you look at the current source driving our diode you will see that it just happens to be
labeled Idrive. So the result of all this is that the component property value Id1 of the
current source’s property I will be swept through a range of values as determined by our
parameter sweep function named SW1.2

The rest of the entries set the type of sweep (here logarithmic) and the range of values over
which to sweep. You can try different values in any of these to see the effect; one of the
advantages of a simulator over a physical prototype is that you can’t blow up your diode
by feeding too much current through it!

So I hit the simulation button and it passed me over the results page, and I created a
couple of graphs of the output. This is how my screen looked...

2You can change this name if you wish, in the Properties menu of the Edit properties window.

64

In each case I have a plot of diode forward voltage (Y-axis) against forward current (X-
axis). The left hand graph has a logarithmic scale for forward current, while the right hand
graph uses a linear current scale. How did I do that? Well, you should know by now that
all things are easy with Qucs!

When you select a graph type from the left hand window and drag it into the viewing area,
it creates a graph and opens a dialog which looks like this

65

The left hand window shows the available variables and whether they are dependent or
independent. Here the current Id1 is the independent variable, and the forward voltage
Vdf.V is the dependent. Double-click on the entry for Vdf.V and it is transferred to the
right hand side; hit OK and the graph will be drawn.

That should give you something like the right hand graph in my screenshot above. Do it
all again, but this time before clicking OK open the Properties window, which looks like
this.

66

Here I’ve selected a logarithmic X Axis, which gave me the graph on the left hand side.
I’ve also moved them around and re-sized them to pretty them up; you can do all kinds of
fancy things if you want.

Now I’ve sneaked in another test to see if you are really following this. Those of you who
did run this simulation are probably wondering about now why your graphs look rather
different to mine. In particular, at high currents on the logarithmic scale your curve is a
straight line, while mine curves upwards alarmingly. What is happening ?

What I did was open the Properties dialog for the diode and set some parameters. This is
what the dialog box looks like...

67

and each of these entries sets one parameter of the virtual component we are using to
model the diode.

So, what are these parameters? Time to explore one of the delights of computer circuit
simulation, device modeling...

4.3 Models and Parameters

When the computer creates that small piece of virtual reality which represents your physical
circuit, it uses sets of equations which describe the operation of each device you insert. The
equation which relates the diode DC forward voltage as a function of current is

Id = Is ·
(
e

Vd

n ·Vt − 1

)

where Vt is the forward voltage drop at 25 degrees C of an ideal junction, also given by

Vt =
kB ·T
q

68

where

kB = Boltzmann’s constant

T = temperature in degrees Kelvin

q = charge of the electron

most of these are constants that the program already knows about. The ones we need to
supply are the ones listed in the properties editor window. For the DC characteristics,
most of the time, the only ones we need to worry about are Is, the saturation current, and
T, the temperature. If we are going to push relatively high currents through the diode
we can also include an estimate for the series resistance Rs; if we are worried about low
current behaviour then we need to add the reverse current parameter Isr.

How do we know what values to insert? Much could be written about device modeling;
much indeed has been written about device modeling. As always, we really have two
choices: use a value from someone else, or find our own values, usually by trial and error.

There are a great many models available for various simulation programs. Probably the
most freely available are those for spice, many of which can be downloaded from the
semiconductor companies. Here, for example, is a typical spice model for a 1N4148 diode:3

.model 1N4148 D(Is=0.1p Rs=16 CJO=2p Tt=12n Bv=100 Ibv=0.1p)

85-??-?? Original library

Any values not supplied are assumed to be the defaults.

The other way is to create your own device parameters, which is a bit like catching worms
before you can go fishing. Insert values, plot the resulting characteristics, see how they
compare with the published data sheet values, go back and adjust the values; continue
until satisfied or exhausted.

Here, for example, is a circuit for quickly comparing the forward characteristics of diodes
with different parameter values.

3I don’t know where this came from, so I can’t acknowledge the author. Most libraries are copyright,
even if freely available.

69

D2
Is=1e-14 A
N=1
Cj0=10 fF
M=0.5
Vj=0.7 V

D1
Is=1e-15 A
N=1
Cj0=10 fF
M=0.5
Vj=0.7 V

D3
Is=3e-18A
N=1
Cj0=10 fF
M=0.5
Vj=0.7 V

D4
Is=1e-9A
N=1.025
Cj0=10 fF
M=0.5
Vj=0.35 V

Idrive
I=Id1

Equation

Eqn1
Vd2=Vi2.V-Vd1.V
Vd3=Vi3.V-Vi2.V
Vd4=Vi4.V-Vi3.V
Export=yes

Parameter
sweep

SW1
Sim=DC1
Type=log
Param=Id1
Start=1e-6
Stop=1
Points=1000

dc simulation

DC1

Vi3

Vi4

Vi2

Vd1

And here is the plotted output...

1.0e-6 1.0e-5 1.0e-4 1.0e-3 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Id1
Id1
Id1
Id1

V
d

1
.V

V
d

2
V

d
3

V
d

4

Figure 4.3: Diode Forward Voltage

The green and purple curves are typical of 1N4148 and 1N4448 devices; the others are
medium and low-barrier Schottky devices. I have done a first pass compare with the data
sheets, but I can’t guarantee that these curves are any more than my best estimates.4

If you want to know more details of what each parameter does, there has been a great deal
written over the years, particularly for spice, on the subject; a google search will quickly

4I’m assuming you are sick of screenshots by now, so I’ve just printed the schematic and display files from
Qucs; you’ll find the print item in the file menu, and if you ask it nicely it will print a postscript file.

70

reveal most of it. Qucs comes with a document which lists the details of its models, and,
being open source, there is always the code itself.

Most of us end up taking a great deal on trust, and matching curves to data sheets as best
we can. This is yet another instance of one of the fundamentals of engineering, the Duck
Principle5: If you can’t detect any difference between the behaviour of your model and the
physical device, then they are, for engineering purposes, the same. Put it another way,
when the difference between the model and the real device drops below the usual level of
measurement uncertainty, it does matter any more.

In any case, component spreads in the real world tend to make the fine details of model
inaccuracies somewhat academic, as we shall see when we model more complex devices.

5Usually expressed as: If it looks like a duck, walks like a duck, quacks like a duck and tastes like a duck,
then, for all practical purposes, it is a duck.

71

5 Getting Started with Digital Circuit
Simulation

5.1 Introduction

On 21 January 2006 Qucs 0.0.8 was released by the Qucs development team. This is the
first version of the package to include digital circuit simulation based on VHDL. FreeHDL1

being chosen as the VHDL engine. In the period following the release of Qucs 0.0.8 there
has been considerable activity centred around finding and correcting a number of bugs
in the Qucs digital simulation code. Many of these fixes are now included in the latest
CVS code and will eventually form part of the next Qucs release. This tutorial note is an
attempt on my part to communicate to other Qucs users a number of background ideas
concerning the capabilities and limitations of the current state of Qucs VHDL simulation.
Much of the information reported here was assembled by the author while assisting Michael
Margraf to test and debug the VHDL code generated by Qucs. In the future, if there is
enough interest in these notes, or indeed in Qucs VHDL simulation in general, I will update
them as the Qucs digital simulation features are improved.

Qucs digital simulation follows a complex set of steps that are mostly transparent to the
software user. In step one, a schematic representing a digital circuit under test is drawn.
This schematic consists of an interconnected group of Qucs digital components, one or
more user defined digital subcircuits (if required), and a copy of the digital simulation
icon with the timing or truth table parameters set. In step two, the information recorded
on a circuit schematic is converted into a text file containing VHDL statements. These
describe the circuit components, their connection, and a testbench for simulating circuit
performance. Next, FreeHDL is launched by Qucs to convert the VHDL code file into a
C++ source program. This is compiled to form an executable machine code simulation of
the original circuit. Finally, Qucs runs this program, collects signal data as digital signal
events take place and displays signal waveforms as a function of time or digital data in a
truth table format.

The VHDL code generated by Qucs 0.0.8 is limited in its scope by the following factors:

• Digital gates are described by data flow concurrent statements.

• Flip-flops and the digital signal generator are described by process statements.

1The FreeHDL Project, http://www.freehdl.seul.org/.

72

http://www.freehdl.seul.org/

• Component connection wires (signals) can only be of type bit as defined in the stan-
dard VHDL library2.

• Digital bus structures are not allowed in this release of the Qucs package.

• Digital subcircuits can be drawn as schematics and associated with a symbol in a
similar fashion to analogue subcircuits.

• Digital subcircuit pins can have type in, out, inout or analog. Qucs treats pins of
type analog the same as VHDL pin type inout.

• Once defined digital subcircuits may be placed and connected to other components
on schematics.

• Multiple copies of the same digital subcircuit are allowed on a single schematic.

• Digital subcircuits may also be nested; nesting has been tested to a depth of four.

5.2 Simulating simple digital circuits

The most basic form of digital circuit that can be simulated is one consisting entirely of
Qucs predefined digital components drawn on a schematic having only one level of design
hierarchy. The truth table for a simple combinational circuit of this type is shown in
Table 8.1.

Output F can be expressed in sum of products Boolean form as

F = A.B.C + A.B.C + A.B.C + A.B.C
2Signal type bit only defines logic signals ’0’ and ’1’. Care must be taken to ensure that signal contention

does not occur during simulation because the resulting logic state cannot be modelled with type bit.
Signal contention can happen when two or more digital devices attempt to drive the same wire with
logic ’0’ and logic ’1’ signals at the same time. Moreover, it is not possible to simulate the performance
of tristate devices using VHDL signal type bit.

A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Table 5.1: Truth table for a logic circuit with inputs A, B, C and output F.

73

On minimisation, using Boolean algebra or a Karnaugh map, output F becomes

F = A.C +B.C

The schematic for example 1 is illustrated in Fig. 5.1. This diagram was constructed using
the same techniques employed for drawing analogue schematics.

5.2.1 Notes on drawing digital schematics

• The only predefined Qucs components that can be used to draw a digital circuit
schematic are (1) the digital components listed in the digital components icon window,
(2) the ground symbol, and (3) the digital simulation icon.

• A useful tip when drawing digital schematics is to adopt the matrix approach shown
in Fig. 5.1. Input signals flow from top to bottom of the schematic and output signals
are positioned on the right-hand side of a horizontal line. This makes checking the
circuit schematic for errors much easier than the case where diagrams have wires
connecting components in an unstructured way.

• Input and output wires (signals) should be given names consistant with the circuit
being simulated, A, B, C and F in Fig. 5.1. If the signal wires are not named by the
user, Qucs will allocate them different arbitrary names. This can make identification
and selection of signals for display on an output waveform graph, and indeed checking
for errors in a large circuit, much more difficult than it need be.

• Notice in Fig. 5.1 the international symbols for the logic gates are shown on the
schematic.

74

&

Y2

&

Y3

1Y1

A B

1

Y4

C

digital
simulation

Digi1
Type=TimeList
time=200ns

CB

BA
C

F

Figure 5.1: Qucs schematic for minimised logic function F.

5.3 VHDL code generated by Qucs

Clicking the Qucs Simulate menu button (or pressing key F2) starts the simulation process.
At an early phase in this process Qucs writes a text file to disk that contains the VHDL
code for the circuit being simulated. This file can be displayed by clicking on the show
last netlist drop down menu or by pressing key F6. The VHDL code produced by Qucs
for the circuit shown in Fig. 5.1 is presented in Table 6.1.

Signals identified by nnnet0 and nnnet1 in Table 6.1 have been allocated these names
by Qucs; nnnet0 and nnnet1 are internal signal nets that are not named on the circuit
schematic shown in Fig. 5.1. Fig. 5.2 illustrates the starting section of a typical Qucs digital
functional waveform plot. This style of plot illustrates signal events without component
delays. If required, signal delays can be specified for individual gates and other components
(from the component edit properties menu). The VHDL code generated for components
with delays will then reflect such changes, for example adding a 10 ns delay to signal CB
in Table 6.1 generates VHDL code

CB <= not C after 10 ns ;

Readers will probably have observed that the Qucs version number referred to in Table 6.1
VHDL listing is 0.0.9. This is the current CVS development version number. Qucs 0.0.9
includes a number of important bug fixes. The remainder of these notes assume readers
have downloaded, and recompiled, the latest CVS code from Sourceforge.net3.

3Please note, Qucs Linux release 0.0.8 will normally simulate single hierarchy digital circuits without

75

−− Qucs 0 . 0 . 9 t u t 1 e x1 . sch
entity TestBench i s
end entity ;
use work . a l l ;

architecture Arch TestBench of TestBench i s
signal CB, A, B, F , C,

nnnet0 ,
nnnet1 : b i t ;

begin
nnnet0 <= C and A;
nnnet1 <= CB and B;
CB <= not C;

A: process
begin

A <= ’ 0 ’ ; wait for 40 ns ;
A <= ’ 1 ’ ; wait for 40 ns ;

end process ;

B: process
begin

B <= ’ 0 ’ ; wait for 20 ns ;
B <= ’ 1 ’ ; wait for 20 ns ;

end process ;

F <= nnnet1 or nnnet0 ;

C: process
begin

C <= ’ 0 ’ ; wait for 10 ns ;
C <= ’ 1 ’ ; wait for 10 ns ;

end process ;

end architecture ;

Table 5.2: VHDL code for the circuit shown in Fig. 5.1.

76

dtime

a.X
b.X
c.X
f.X

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n 120n 130n 140n 150n 160n 170n 180n 190n 200n

Figure 5.2: Digital functional waveforms for the circuit shown in Fig. 5.1.

5.4 Truth tables

Truth tables are one of the most fundamental and convenient ways of displaying digital
circuit data. Qucs has a built-in facility that allows a truth table to be generated from
a schematic drawing. This feature is particularly useful when checking minimised logic
designs for errors. Lets consider a simple but instructive example: A logic circuit has four
binary inputs A, B, C, and D, and one output P. Output P is logic ’1’ when inputs ABCD
are numbers in the decimal sequence 3, 5, 7, 11 and 13. In Boolean sum of product form

P = A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D

This simplifies to

P = D.(A.B +B ⊕ C)

The schematic for the sum of products equation for P is shown in Fig. 5.3(a). Similarly
Fig. 5.3(b) presents the schematic for a minimised P equation. Setting the digital simulation
type to TruthTable, rather than TimeList, causes Qucs on pressing key F2, to generate
a truth table based on the information provided on a circuit schematic. The number of
truth table inputs, and indeed outputs, correspond to the number of input generators and
the number of named outputs. Truth tables for both schematics are given in Table 5.3(a)
and 5.3(b). Comparing these two tables clearly indicates that they are not identical and
moreover confirms that the minimised solution is not correct. Reworking the minimisation
procedure points to the error being a missing signal inversion. The correct Boolean equation
for P is

P = D.(A.B +B ⊕ C)

error. However, Qucs 0.0.8 does fail at the VHDL to C++ conversion phase if a schematic includes
more than one ground symbol.

77

&

Y9

&

Y8

&

Y7

&

Y6

1Y3C D1Y2
BA

digital
simulation

Digi1
Type=TruthTable

1Y1

&

Y11

1

Y10

BA DC

P

5.3(a): Schematic diagram for sum of products equation P

DCB

1Y3

A digital
simulation

Digi1
Type=TruthTable

&

Y7

=1

Y4

&

Y6

1

Y8

CBA
D

P

5.3(b): Schematic diagram for minimised equation P

78

5.3(a): Truth table for sum of products equa-
tion P

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

a.X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

b.X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

c.X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

d.X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

p.X
0
0
0
1
0
1
0
1
0
0
0
1
0
1
0
0

5.3(b): Truth table for minimised equation P

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

a.X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

b.X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

c.X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

d.X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

p.X
0
0
0
1
0
1
0
0
0
0
0
1
0
1
0
1

79

5.5 Digital subcircuits

Although it is possible to draw complex schematic diagrams using only the predefined
digital components supplied with Qucs, this technique can be extremely tedious, and is of
course, prone to error. When drawing large schematics we require a design procedure that
naturally subdivides groups of digital components into self contained units. These units can
then be treated in the same way as basic digital components when placing and connecting
them on a schematic drawing. In the world of analogue and digital circuit design such
units are often called subcircuits.4 A subcircuit is defined by three major attributes plus a
number of other properties. The major attributes are, firstly a digital circuit that defines
circuit function, secondly a circuit symbol that depicts a circuit in a higher level of a design
hierarchy, and thirdly the subcircuit input/output pins shown on the subcircuit symbol.
Other properties include for example, signal path delays. The process for generating digital
subcircuits is identical to that used for analogue subcircuits. It is best demonstrated by
considering an example. Figure 5.4 shows the schematic for a four input combinational
circuit.

After drawing a subcircuit schematic, input and output5 pins are attached to signal ports.
Input port pins of type in are shown on circuit diagrams as a green symbol, signals W,
X, Y, and Z, in Fig. 5.4. Ouput port pins of type out are coloured red, signal G in
Fig. 5.4. Signal flow through a port is indicated by the direction of the port symbol arrow
head. Input/output signals, and any other signals that need to be easily identified, are also
named. Once the subcircuit schematic is complete, pressing key F3 causes Qucs to generate
a subcircuit symbol. The drawing tools listed as icons in the Qucs paintings window can be
used to edit Qucs generated subcircuit symbols. The input/output port pins on a subcircuit
symbol have the same type and name as those on the original subcircuit schematic. Fig. 5.5
shows the finished symbol for subcircuit COMB1. In these notes, symbol outlines are
shown drawn in accordance with the international code for logic symbols6. To test our
new subcircuit we place it’s symbol on a blank drawing sheet and apply test signals to the
input pins and observe the signals at the output pin. Fig. 5.6 shows a typical test circuit.
Subcircuit Gen4bit generates a 4 bit test pattern synchronised to the input of a digital
clock. The specification for Gen4bit is given in the next section of these notes7. The test
pattern waveform and output signal G are shown plotted as a function of time in Fig. 5.7.

4The circuit simulator SPICE is a well known example of a widely used CAD program that makes
extensive use of subcircuits in circuit design.

5Qucs 0.0.8 has a bug which causes a VHDL compile error when subcircuit pins are specified as type out.
A work around for this bug is to specify subcircuit output pins as type analog. The Qucs routines that
generate the circuit VHDL code convert pin type analog into VHDL type inout. FreeHDL is then able
to compile the generated VHDL code without error. This bug has been corrected in Qucs 0.0.9.

6Ian, Kampel, A practical introduction to the new logic symbols, Butterworths, 1985, ISBN 0-408-01461-
X.

7Subcircuit Gen4bit includes other nested subcircuits. Qucs 0.0.8 has a bug that causes VHDL compile
errors with some configurations of nested subcircuits. This has been fixed in version 0.0.9.

80

&

Y5

&

Y6

&

Y7

1Y11Y21Y3

XYZ W

&

Y4

1

Y8

G

IN2

IN3

XB
YBZ

Y

W

WBX

In4

IN1

G

Figure 5.4: Combinational logic circuit with inputs W, X, Y, Z, and output G.

W

X

Y

Z

G

SUB
File=name

COMB1

X

W

Y

Z

G

Figure 5.5: Qucs symbol for a logic circuit with inputs W, X, Y, Z, and output G.

81

R
times=5ns; 1sec

CLOCK
times=10ns; 10ns

R B0

B1

B2

B3

Gen4bit

SUB2
File=gen4bit.sch

COMB1

X

W

Y

Z

G

SUB1
File=dtut1_ex2.sch

digital
simulation

COMB1
Type=TimeList
time=1000 ns

CLOCK

R B0

B2

B3

B1

G

Figure 5.6: Test schematic for a logic circuit with inputs W, X, Y, Z, and output G.

82

dtime

r.X
clock.X
b0.X
b1.X
b2.X
b3.X
g.X

5n 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n

Figure 5.7: Digital functional waveforms for a logic circuit with inputs W, X, Y, Z, and
output G.

83

5.6 Building a digital component library

The Qucs graphical user interface includes good project handling features. Combining
these features with the Qucs subcircuit capabilities provides all the tools required for the
development of a library of common digital components. Such a library can be stored in
a master project and the individual component files imported into other projects when
required. Here are a few components that I developed during a recent series of tests aimed
at detecting bugs in the VHDL code generated by Qucs.

5.6.1 Logic zero

L0

SUB
File=name

0
L0

5.6.2 Logic one

L1

SUB
File=name

1 1

Y1

L1
L1

5.6.3 G2bit - 2 bit pattern generator

SUB
File=name

B1

B0

CLK

B0

B1

RES R

Gen2bit

84

S

R

J

K

Q

Q

FF0

S

R

J

K

Q

Q

FF1

B1

CLK

RES

0
SUB2

1

SUB1

B0

JK

B1

CLK

R

B0

B0b
B1b

5.6.4 G4bit - 4 bit pattern generator

SUB
File=name

B3

B2

B1

B0R

CLK

R B0

B1

B2

B3

Gen4bit

S

R

J

K

Q

Q

FF0

S

R

J

K

Q

Q

FF1

S

R

J

K

Q

Q

FF2

S

R

J

K

Q

Q

FF3

B2B1 B3B0

1
SUB1 0

SUB2

CLK

R

Q0B

JK

CLK

Q2B Q3BQ1B

B2B1 B3B0

85

5.6.5 MUX2to1 - 2 input to 1 output multiplexer

EN A Y
1 X L
0 0 D0
0 1 D1

SUB
File=name

MUX

ENB

A
Y

D1

D0

EN

0

1

0 0} G
1

1

Y4&

Y3

&

Y2

1

Y1
YA

D0

D1

D1

Y
D0

A

86

5.6.6 MUX4to1 - 4 input to 1 multiplexer

B A EN Y
X X 1 0
0 0 0 D0
0 1 0 D1
1 0 0 D2
1 1 0 D3

SUB
File=name

ENB

A

B

D0

D1

D3

D2

Y

MUX

EN

0

1

0

1

2

3

} 0

3
G

&

Y1

&

Y2

&

Y3

&

Y4

1

Y5

1Y71Y8 1Y6

D2 D1 D0 B A ENBD3

Y

ENB

EN

D0D1

ABBB AB

D2
D3

Y

87

5.6.7 2 bit adder

A1

B1

A2

B2

CI C0

S2

S1

Σ
0

1

0

1

0

1

}

ΣA}

B

{

CI CO

SUB
File=name

A1B1A2B2CI
=1

Y1

=1

Y6

&

Y8

&

Y9

1

Y7
&

Y5

&

Y4

=1

Y2

1

Y3

=1

Y10
S2

C0

S1

A2B2CI A1B1

S1

S2

CO

5.7 Subcircuit VHDL code generated by Qucs

Qucs generates a separate entity-architecture model for each subcircuit. These component
definitions are compiled into the work library by FreeHDL. Here is the VHDL code from
two of the previous examples.

5.7.1 Gen2bit

88

entity Sub gen2bit i s
port (CLK: in b i t ;

R: in b i t ;
nnout B0 : out b i t ;
nnout B1 : out b i t) ;

end entity ;
use work . a l l ;
architecture Arch Sub gen2bit of Sub gen2bit i s

signal B0b ,
B1b ,
JK,
nnnet0 ,
B0 ,
B1 : b i t ;

begin
FF0 : process (nnnet0 , R, CLK)
begin

i f (R= ’1 ’) then B0 <= ’ 0 ’ ;
e l s i f (nnnet0 = ’1 ’) then B0 <= ’ 1 ’ ;
e l s i f (CLK= ’1 ’ and CLK’ event) then

B0 <= (JK and not B0) or (not JK and B0) ;
end i f ;

end process ;
B0b <= not B0 ;

FF1 : process (nnnet0 , R, B0b)
begin

i f (R= ’1 ’) then B1 <= ’ 0 ’ ;
e l s i f (nnnet0 = ’1 ’) then B1 <= ’ 1 ’ ;
e l s i f (B0b= ’1 ’ and B0b ’ event) then

B1 <= (JK and not B1) or (not JK and B1) ;
end i f ;

end process ;
B1b <= not B1 ;

SUB2 : entity S u b l o g i c z e r o port map (nnnet0) ;
nnout B0 <= B0 or ’ 0 ’ ;
nnout B1 <= B1 or ’ 0 ’ ;
SUB1 : entity Sub Logic one port map (JK) ;

end architecture ;

5.7.2 2 bit adder

entity Sub fadd 2bi t i s
port (A1 : in b i t ;

B1 : in b i t ;

89

A2 : in b i t ;
B2 : in b i t ;
CI : in b i t ;
nnout S1 : out b i t ;
nnout S2 : out b i t ;
nnout CO : out b i t) ;

end entity ;
use work . a l l ;
architecture Arch Sub fadd 2bit of Sub fadd 2bi t i s

signal nnnet0 ,
nnnet1 ,
nnnet2 ,
nnnet3 ,
nnnet4 ,
nnnet5 ,
nnnet6 ,
S2 ,
CO,
S1 : b i t ;

begin
S1 <= CI xor B1 xor A1 ;
nnnet0 <= B2 xor A2 ;
nnnet1 <= nnnet0 and nnnet2 ;
nnnet3 <= B2 and A2 ;
nnnet2 <= nnnet4 or nnnet5 ;
nnnet4 <= nnnet6 and CI ;
nnnet5 <= B1 and A1 ;
S2 <= B2 xor A2 xor nnnet2 ;
CO <= nnnet3 or nnnet1 ;
nnnet6 <= B1 xor A1 ;
nnout S2 <= S2 or ’ 0 ’ ;
nnout CO <= CO or ’ 0 ’ ;
nnout S1 <= S1 or ’ 0 ’ ;

end architecture ;

5.7.3 Notes on subcircuit VHDL generation

• Qucs predefined digital components generate concurrent data flow signal statements
or process statements.

• Previously defined subcircuit symbols generate VHDL port map statements.

• Type out entity port signals are prevented from being read as input signals by masking
each output signal using the logic function signal-name OR ’0’.8

8Attempting to read entity port signals of type out results in a VHDL compile error.

90

• A VHDL

use work . a l l ;

statement is included before each subcircuit architecture definition to ensure that
FreeHDL can find any nested subcircuits 9.

• The complete VHDL code file for a digital design is composed from an outer test
bench entity-architecture model plus entity-architecture models for each subcircuit
specified in the design,

5.8 Subcircuit nesting: A more complex design example

In theory there is no limit to the depth of subcircuit nesting allowed by Qucs. In practice
most digital circuit schematics can be constructed with a maximum of four or five levels of
design hierarchy. Figure 5.8 shows an example that was used to test Qucs subcircuit nesting
performance. The design is a simple RTL function that uses a multiplexer to transfer data
from one of two input registers to a single output register. The next section of these notes
outlines in detail the specification of the subcircuits needed to build the RTL design. A
set of sample simulation waveforms showing the register transfer operation are illustrated
in Fig. 5.9.

9Strictly speaking it should not be necessary to specifically state the use of the work library as this library
is normally visible at all times when compiling entity-architecture models. However, at this stage in the
development of FreeHDL it does appear that it is necessary when using the default FreeHDL VHDL
library mapping.

91

5.8.1 4 bit RTL design

1

Y1

0

SUB5 CONTROL2
Num=2

MUX

0 G

0

1

0

1

0

1

0

1

0

1
}

SUB1
File=quad_mux2to1.sch

REG 4bit

D0

D1

D2

D3

Q0

Q1

Q2

Q3

LOAD

SUB2
File=reg_4bit.sch

REG 4bit

D0

D1

D2

D3

Q0

Q1

Q2

Q3

LOAD

SUB4
File=reg_4bit.sch

1

SUB14

1

SUB13

REG 4bit

D0

D1

D2

D3

Q0

Q1

Q2

Q3

LOAD

SUB3
File=reg_4bit.sch

digital
simulation

Digi1
Type=TimeList
time=1000 ns

CLOCK

CONTROL1

R3D0

R3D3

CONTROL2R1D

R3D1

R2Q0

R2Q1

R2Q2

R2Q3

R2D

LOAD

R1Q0

R1Q2

R1Q3

CLOCK

AND_LOAD

R3D2

R1Q1

CONTROL1

R3Q0

R3Q1

R3Q2

R3Q3

VHDL Test circuit 2
Multi-hierarchy RTL circuit

CONTROL2:R(SUB2)<- R(SUB4)
not(CONTROL2) and CONTROL1 : R(SUB2)<-R(SUB3)

Figure 5.8: Top level schematic.

92

Reg4bit

SUB
File=name

CLOCK

LOAD

D3

D2

D1

D0

Q3

Q2

Q1

Q0

REG 4bit

D0

D1

D2

D3

Q0

Q1

Q2

Q3

LOAD

D

EN

SUB1
File=d_flip_flop_l.sch

D

EN

SUB2
File=d_flip_flop_l.sch

D

EN

SUB3
File=d_flip_flop_l.sch

D0
Num=1

D1
Num=2

D2
Num=3

LOAD
Num=5

CLOCK
Num=6

Q0

D

EN

SUB4
File=d_flip_flop_l.sch

D3
Num=4

Q1

Q2

Q3

D0

D1

D2

LOAD

CLOCK

Q0

D3

Q1

Q2

Q3

93

D flip-flop with load enable

SUB
File=name

D

EN

CLOCK

Q

D

EN

D Q

R

Y1

0

SUB2
File=logic_zero.sch

1G0

1

0

Mux2to1
0

SUB1
File=mux2to1.sch

EN

D

CLOCK

QQ

D

EN

CLOCK

Mux2to1

SUB
File=name

A

D1

D0 Y

1G0

1

0

Mux2to1
0

1

Y4&

Y3

&

Y2

1

Y1
A
Num=1

D0
Num=2

D1
Num=3

Y
Num=4

D1

Y

A

D0

94

QuadMux

SUB
File=name

B3

A3
Y3

B2

A2

B1

A1

B0

A0

Y2

Y1

Y0
MUX

SEL 0 G

0

1

0

1

0

1

0

1

0

1
}

1G0

1

0

Mux2to1
0

SUB1
File=mux2to1.sch

1G0

1

0

Mux2to1
0

SUB2
File=mux2to1.sch

1G0

1

0

Mux2to1
0

SUB3
File=mux2to1.sch

1G0

1

0

Mux2to1
0

SUB4
File=mux2to1.sch

A0
Num=2

B0
Num=6

SEL
Num=1

A1
Num=3

B1
Num=7

A2
Num=4

B2
Num=8

A3
Num=5

B3
Num=9

Y0
Num=10

Y1
Num=11

Y2
Num=12

Y3
Num=13

95

dtime

clock.X
control1.X
control2.X
load.X
r1q0.X
r1q1.X
r1q2.X
r1q3.X
r2q0.X
r2q1.X
r2q2.X
r2q3.X
r3d0.X
r3d1.X
r3d2.X
r3d3.X
r3q0.X
r3q1.X
r3q2.X
r3q3.X

370n 380n 390n 400n 410n 420n 430n 440n 450n 460n 470n 480n 490n 500n 510n 520n 530n 540n 550n

Figure 5.9: Sample simulation waveforms for RTL design.

5.9 Update number one: May 2006

Although it is only a short time since the first version of these digital tutorial notes was
posted on the Qucs Sourceforge Web site, much has happened in the world of Qucs digital
simulation. Bugs in the Qucs code have been found, and fixed, and a range of new features
added to the software. These expand the power of Qucs digital simulation and give users a
glimpse of how the package will evolve in the future. The purpose of these notes is firstly
to update readers as to the changes to Qucs digital simulation and secondly to explain how
to use the new Qucs features. Please note however, they are not intended to teach readers
how to program using VHDL.10

5.9.1 Bugs, corrections and small changes to the Qucs digital
simulation code

All the bugs reported in the first version of these notes have been corrected in the latest
Qucs CVS code. These corrections are, of course, also included in Qucs release 0.0.9.
During testing a number of other annoying, but significant, bugs have also been found and
eliminated, these include

• Multiple input gates (three or more inputs) of types nand and nor failed at the
FreeHDL compile stage due to an error in the VHDL code generated by Qucs.

10A good introduction to the VHDL language and it’s application in digital system design can be found
in Digital System Design using VHDL by Charles H. Roth, Jr, PWS Publishing Company, 1997,
ISBN 0-534-95099-X.

96

• Signals names and, for example, component names constructed from a single letter
that was an abbreviation for a physical unit failed to compile.

• Changing digital component time delays caused component connections on a sche-
matic to be removed.

• GUI problems caused by errors in the symbol rotation and mirror code.

• Qucsconv code conversion errors caused the Qucs digital simulation cycle to fail before
plotting TimeList waveforms.

A number of changes to either the VHDL code generated by Qucs or the schematic capture
GUI have been introduced, these include

• The VHDL code generated by Qucs for the ground symbol has been changed from

gnd <= gnd and ’ 0 ’ ;

to

gnd <= ’ 0 ’ ;

• The symbol for digital inout ports has been changed from the analogue pin symbol
to one that consists of the digital in and out pins drawn back-to-back. This reflects
the bidirectional status of an inout port.

A more complete list of all the bug corrections and other program modifications can be
found in the Qucs change log files.

5.9.2 New digital simulation features

The flow diagram illustrated in Fig. 5.10 shows a number of different simulation routes for
a digital circuit under test. The Qucs digital simulation facilities have been improved to
include direct simulation of VHDL testbench code and the simulation of circuit schematics
that include digital components specified by VHDL entity-architecture models. The various
combinations that users can adopt for Qucs digital circuit entry are as follows:

1. Schematic circuit entry using predefined digital component symbols, subcircuits gen-
erated using the same symbols and a copy of the digital simulation icon; this is the
approach described in the first version of these tutorial notes.

2. Circuit entry identical to 1 plus symbols for digital components specified by VHDL
entity-architecture models.

3. Circuit entry using the Qucs VHDL code editor. The text entered describes both
the circuit under test and the test vectors needed to drive the circuit inputs during
simulation.

Once the circuit under test has been entered into Qucs, clicking the Simulate menu button,
or pressing key F2, starts the Qucs digital simulation process.

97

VHDL
entity/architecture
code model

Generate
VHDL

symbol

VHDL
STD

library
elements

VHDL testbench
code

Entered using
Qucs VHDL
editor

Digital circuit under test

 Circuit drawing

Entered using Qucs
schematic capture

Predefined Qucs
digital component
symbols

Digital
subcircuit
symbols

Generated
using Qucs

schematic capture

SIMULATE

Qucs GUI

FreeHDL

VHDL Testbench code

Machine code simulation
of circuit under test

Simulation
Output
data

Qucs Truth Table

Qucs TimeList plot

Run

View

Compile VHDL code
and generate machine
code simulation program
for circuit under test

Figure 5.10: Flow diagram of Qucs digital simulation routes.

98

5.9.3 Limitations

Before describing the new digital simulation features it is important that readers under-
stand the limitations that are inherent in the various digital simulation routes described
in the last section and illustrated in the flow diagram shown in Fig. 5.10. Qucs schematic
capture allows users to draw circuits consisting of predefined component symbols and sub-
circuit symbols. At this stage in the development of the GUI digital signals must be of
type bit (as defined in the VHDL standard library - library STD in the FreeHDL package)
where individual signals flow through a single wire. Qucs schematic drawing bus structures
of VHDL type bit-vector, for example, have not been implemented yet. This implies that
the device symbol port pins must represent single signals. Similarly the nets connecting
pins on more than one device can only be single signal nets and not bus structures. It is
anticipated that this will change in a future Qucs release.

Although the current release of FreeHDL is 0.0.1 the package implements a substantial
subset of the entire VHDL language11. The major features not supported by release 0.0.1
are:

• Shared variables.

• The following attributes; transaction, quiet, stable and delayed.

• User defined attributes.

• Groups.

• Guarded signal assignments.

• Currently drivers cannot be switched off.

The Qucs TimeList plotting program uses signal data output by the machine code simula-
tion program generated by the FreeHDL package12. A current limitation of the TimeList
plotting program is that it can only display signals of type bit. Bus signal waveforms
cannot be displayed.

Given the above limitations it is therefore possible to write VHDL code that can be com-
piled by FreeHDL but will cause problems at either the schematic drawing or output
waveform plotting stages in the Qucs simulation cycle. As Qucs develops it is expected
that these limitations will be removed. On the subject of limitations one final point to
note: FreeHDL can simulate circuits described by the data types and other features found
in the

11A complete description of the 1987 and 1993 specifications of the VHDL language can be found in The
Designer’s Guide to VHDL by Peter J Ashenden, second edition 2002, Morgan Kaufmann Publishers,
ISBN 1-55860-674-2.

12The machine code simulation program outputs signal data in VCD format. This is then converted to
the Qucs TimeList data format by the qucsconv utility program.

99

IEEE.std_logic_1164

library and other predefined libraries. However, at this stage in the development of the
Qucs software only the VHDL standard library may be used, implying that data type bit
must be used to represent logic signals.

5.9.4 Using the Qucs VHDL editor

Qucs release 0.0.9 includes a VHDL text editor13 that has all the usual edit features plus
colour coding of the various VHDL language statements. One unusual feature of this editor
is a zoom control that allows the text size to be increased or decreased in a similar way
to the schematic drawing zoom. The VHDL editor is included in the Qucs package for
two primary purposes, firstly for purely text file VHDL simulation14 and secondly for the
development of VHDL entity-architecture models that can be linked to schematic capture
symbols. The latter increases significantly the capabilities of the Qucs software in that it
allows libraries of hand-crafted device models to be constructed. These new library devices
will, given support by the general Qucs user community, greatly expand the potential use of
the Qucs package. In this section the use of the VHDL text editor is demonstrated through
a series of digital circuit simulation examples. The included VHDL listings indicate typical
Qucs use of a number of the basic VHDL data types. The text also outlines any limitations
imposed by Qucs.

• Example 1: A sum of products (SOP) combinational digital circuit.

The Boolean equation15 for a SOP combinational circuit is:

f = W.X.Y .Z +W.X.Y .Z +W.Y .Z +W.X.Y.Z

The VHDL code for a structural model of this combinational circuit and its associated
testbench is given in the following listing.

−− Qucs VHDL ed i t o r example 1
−−
entity t e s t v e c t o r i s −− Test v ec t o r genera tor .

port (z , y , x , w : out b i t
) ;

end entity t e s t v e c t o r ;
−−
architecture behav ioura l of t e s t v e c t o r i s

13To launch the new VHDL editor click on the second icon from the left on the Qucs toolbar. It can also
be activated using the key sequence Ctrl+Shift+V.

14This is still the preferred method amongst many experienced users of VHDL. However, the circuit
schematic drawing approach does seem to be growing in popularity.

15The Boolean equation for function f has not been minimised. It is in a form derived directly from a
truth table and is introduced purely as an example to demonstrate the use of the Qucs VHDL editor.

100

begin
pz : process i s

begin
z <= ’0 ’ ; wait for 20 ns ;
z <= ’1 ’ ; wait for 20 ns ;

end process pz ;
py : process i s

begin
y <= ’0 ’ ; wait for 40 ns ;
y <= ’1 ’ ; wait for 40 ns ;

end process py ;
px : process i s

begin
x <= ’0 ’ ; wait for 80 ns ;
x <= ’1 ’ ; wait for 80 ns ;

end process px ;
pw : process i s

begin
w <= ’0 ’ ; wait for 160 ns ;
w <= ’1 ’ ; wait for 160 ns ;

end process pw;
end architecture behav ioura l ;
−−
entity and4 i s −− 4 input and ga te .

port (in1 , in2 , in3 , in4 : in b i t ;
out1 : out b i t

) ;
end entity and4 ;
−−
architecture dataf low of and4 i s
begin

out1 <= in1 and in2 and in3 and in4 ;
end architecture dataf low ;
−−
entity and3 i s −− 3 input and ga te .

port (in1 , in2 , in3 : in b i t ;
out1 : out b i t

) ;
end entity and3 ;
−−
architecture dataf low of and3 i s
begin

out1 <= in1 and in2 and in3 ;
end architecture dataf low ;
−−

101

entity or4 i s −− 4 input or ga te .
port (in1 , in2 , in3 , in4 : in b i t ;

out1 : out b i t
) ;

end entity or4 ;
−−
architecture dataf low of or4 i s
begin

out1 <= in1 or in2 or in3 or in4 ;
end architecture dataf low ;

entity inv i s −− I n v e r t e r .
port (in1 : in b i t ;

out1 : out b i t
) ;

end entity inv ;
−−
architecture dataf low of inv i s
begin

out1 <= not in1 ;
end architecture dataf low ;
−−
entity te s tbench i s −− Test bench outer e n t i t y wrapper .
end entity te s tbench ;
−−
l ibrary work ;
use work . a l l ;
−−
architecture s t r u c t u r a l of te s tbench i s −− Testbench a r c h i t e c t u r e .
signal b0 , b1 , b2 , b3 , zb , yb , xb , wb, a , b , c , d , f : b i t ;
begin

d1 : entity t e s t v e c t o r port map(b0 , b1 , b2 , b3) ;
d2 : entity inv port map(b0 , wb) ;
d3 : entity inv port map(b1 , xb) ;
d4 : entity inv port map(b2 , yb) ;
d5 : entity inv port map(b3 , zb) ;
d6 : entity and4 port map(zb , yb , b1 , wb, a) ;
d7 : entity and4 port map(zb , yb , xb , wb, b) ;
d8 : entity and3 port map(zb , yb , b0 , c) ;
d9 : entity and4 port map(b0 , b1 , b2 , b3 , d) ;
d10 : entity or4 port map(a , b , c , d , f) ;

end architecture s t r u c t u r a l ;

On entry of this code into the Qucs VHDL text editor the text is colour coded. Un-
fortunately, the colour coding is lost when printed, or pasted into a word processor,

102

or a layout package like LaTeX. The structure of the VHDL listing follows the nor-
mal convention for text based VHDL simulation. All component entity-architecture
models must be defined before they are referenced in other component models. The
simulation test bench must be the last entity-architecture model in the VHDL list-
ing. During the VHDL compile phase FreeHDL compiles the component entity-
architecture models to the work library16. These compiled models are then made
available to the simulation test bench through the use of the VHDL use statement
inserted in the listing prior to the testbench architecture statement. Once the VHDL
listing for the simulation has been typed into the Qucs VHDL code editor, pressing
key F2 starts the simulation process. The simulation duration can be set using the
Document Settings in the File dropdown menu (or by pressing the Ctrl+. keys).
Any VHDL syntax errors, or indeed typos, are written to file and can be viewed by
pressing key F5. Obviously if errors are reported these need to be corrected using
the VHDL text editor and the simulation cycle restarted. A typical TimeList output
for editor example 1 is shown in Fig. 5.11.

dtime

b0.X
b1.X
b2.X
b3.X
f.X

0 20n 40n 60n 80n 100n 120n 140n 160n 180n 200n 220n 240n 260n 280n 300n 320n

Figure 5.11: Sample simulation waveforms for VHDL editor example 1 design.

• Example 2: VHDL editor example 1 modelled using dataflow VHDL statements.

The VHDL code for the second example is given in the next listing. The VHDL
style chosen to model the circuit is based on VHDL dataflow concurrent signal as-
signments. The input text vectors are generated using a simple state machine rather
than separate process statements. The test vector generator port specification uses
entirely single signal bit types and can be easily interfaced, without problems, to
other components connected on a Qucs schematic diagram. The procedure for gen-
erating schematic capture component symbols from entity - architecture models is
introduced in a later section of these notes. The use of bit vector bus constructions
is also illustrated in this example. Qucs allows the use of bit vectors as signals or
variables in VHDL models provided all signals in the port statement of entity dec-
laration are of type bit only.17 A typical TimeList output for editor example 2 is
shown in Fig. 5.12.

16In most VHDL implementations library work is always visible and there is no requirement to make it
visible by using the library and use statements. However, FreeHDL appears to need these statements
at the linking phase otherwise the VHDL compiler fails.

17This is a restriction of Qucs 0.0.9 and will be removed in a later release of the package. Also note signals
of type bit vector that are declared in architecture definitions are listed in the TimeList plot signal

103

−− Qucs VHDL ed i t o r example 2
−−
entity t e s t v e c t o r a i s

port (RESET, CLOCK : in b i t ;
B0 , B1 , B2 , B3 : out b i t

) ;
end entity t e s t v e c t o r a ;
−−
architecture behav ioura l of t e s t v e c t o r a i s
signal p r e s e n t s t a t e , n e x t s t a t e : b i t v e c t o r (3 downto 0):= ”1111 ” ;
begin
−−
p1 : process (CLOCK) i s

begin
i f (CLOCK’ event and CLOCK= ’1 ’) then

p r e s e n t s t a t e <= n e x t s t a t e ;
end i f ;

end process p1 ;
−−
p2 : process (RESET, p r e s e n t s t a t e) i s

begin
i f (RESET = ’1 ’) then n e x t s t a t e <= ”1111 ” ;
end i f ;

case p r e s e n t s t a t e i s
when ”0000 ” => n e x t s t a t e <= ”0001 ” ;
when ”0001 ” => n e x t s t a t e <= ”0010 ” ;
when ”0010 ” => n e x t s t a t e <= ”0011 ” ;
when ”0011 ” => n e x t s t a t e <= ”0100 ” ;
when ”0100 ” => n e x t s t a t e <= ”0101 ” ;
when ”0101 ” => n e x t s t a t e <= ”0110 ” ;
when ”0110 ” => n e x t s t a t e <= ”0111 ” ;
when ”0111 ” => n e x t s t a t e <= ”1000 ” ;
when ”1000 ” => n e x t s t a t e <= ”1001 ” ;
when ”1001 ” => n e x t s t a t e <= ”1010 ” ;
when ”1010 ” => n e x t s t a t e <= ”1011 ” ;
when ”1011 ” => n e x t s t a t e <= ”1100 ” ;
when ”1100 ” => n e x t s t a t e <= ”1101 ” ;
when ”1101 ” => n e x t s t a t e <= ”1110 ” ;
when ”1110 ” => n e x t s t a t e <= ”1111 ” ;
when ”1111 ” => n e x t s t a t e <= ”0000 ” ;

end case ;
B3 <= n e x t s t a t e (3) ; B2 <= n e x t s t a t e (2) ;
B1 <= n e x t s t a t e (1) ; B0 <= n e x t s t a t e (0) ;

dialogue. However, a text message saying no data results if an attempt is made to display them. Again
this limitation will be removed in a later release of Qucs.

104

end process p2 ;
end architecture behav ioura l ;
−−
l ibrary work ;
use work . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture dataf low of te s tbench i s
signal r e s e t , c lk , b0 , b1 , b2 , b3 , zb : b i t ;
signal yb , xb , wb, a , b , c , d , f : b i t ;
begin
p1 : process i s

begin
c l k <= ’ 0 ’ ; wait for 10 ns ;
c l k <= ’ 1 ’ ; wait for 10 ns ;

end process p1 ;
−−
p2 : process i s

begin
r e s e t <= ’ 1 ’ ; wait for 10 ns ;
r e s e t <= ’ 0 ’ ; wait for 2000 ns ;

end process p2 ;
−−
d1 : entity t e s t v e c t o r a port map(r e s e t , c lk , b0 , b1 , b2 , b3) ;
−−
−− Data f l ow model o f combinat iona l c i r c u i t

wb <= not b0 ; xb <= not b1 ; yb <= not b2 ; zb <= not b3 ;
a <= (wb and b1) and (yb and zb) ;
b <= (wb and xb) and (yb and zb) ;
c <= b0 and (yb and zb) ;
d <= (b0 and b1) and (b2 and b3) ;
f <= a or b or c or d ;

end architecture dataf low ;

• Example 3: VHDL editor example 1 modelled using VHDL process statements and
variables.

The VHDL code for the third example is given in the listing at the end of this
paragraph. In this example the use of VHDL variables is illustrated. The VHDL code
for the vector generator is a little unusual in that rather than using the traditional
two process design employing signals, a single process statement employing variables
undertakes both the calculation of the next state data and the transfer of the next
state information to the present state. This approach is necessary because FreeHDL
does not allowed shared variables. Once again in this example only single bit data

105

dtime

reset.X
b0.X
b1.X
b2.X
b3.X
f.X

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n 120n 130n 140n 150n 160n 170n

Figure 5.12: Sample simulation waveforms for VHDL editor example 2 design.

is passed via the entity statement to the device under test. The device under test is
represented by a truth table encoded in a process statement. This is not the most
elegant code but it does serve the purpose of demonstrating the use of different VHDL
constructions and data types in Qucs digital simulation. A typical TimeList plot for
VHDL editor example 3 is shown in Fig. 5.13. Comparison of the three output
plots for the VHDL editor examples indicates that all the simulation results are very
similar with some slight differences in the start up phase following the RESET pulse
changing from logic ’1’ to logic ’0’. This is probably an effect due to the different
initialisation sequences for each of the test vector models.

−− Qucs VHDL ed i t o r example 3
−−
entity t e s t v e c t o r b i s

port (RESET, CLOCK : in b i t ;
B0 , B1 , B2 , B3 : out b i t

) ;
end entity t e s t v e c t o r b ;
−−
architecture behav ioura l of t e s t v e c t o r b i s
begin
p1 : process (RESET, CLOCK) i s

variable p r e s e n t s t a t e , n e x t s t a t e :
b i t v e c t o r (3 downto 0):= ”0000 ” ;

begin
i f (RESET = ’1 ’) then n e x t s t a t e := ”0000 ” ;
e l s i f (CLOCK’ event and CLOCK= ’1 ’) then

p r e s e n t s t a t e := n e x t s t a t e ;
case p r e s e n t s t a t e i s
when ”0000 ” => n e x t s t a t e := ”0001 ” ;
when ”0001 ” => n e x t s t a t e := ”0010 ” ;
when ”0010 ” => n e x t s t a t e := ”0011 ” ;
when ”0011 ” => n e x t s t a t e := ”0100 ” ;
when ”0100 ” => n e x t s t a t e := ”0101 ” ;
when ”0101 ” => n e x t s t a t e := ”0110 ” ;
when ”0110 ” => n e x t s t a t e := ”0111 ” ;

106

when ”0111 ” => n e x t s t a t e := ”1000 ” ;
when ”1000 ” => n e x t s t a t e := ”1001 ” ;
when ”1001 ” => n e x t s t a t e := ”1010 ” ;
when ”1010 ” => n e x t s t a t e := ”1011 ” ;
when ”1011 ” => n e x t s t a t e := ”1100 ” ;
when ”1100 ” => n e x t s t a t e := ”1101 ” ;
when ”1101 ” => n e x t s t a t e := ”1110 ” ;
when ”1110 ” => n e x t s t a t e := ”1111 ” ;
when ”1111 ” => n e x t s t a t e := ”0000 ” ;

end case ;
end i f ;

B3 <= n e x t s t a t e (3) ; B2 <= n e x t s t a t e (2) ;
B1 <= n e x t s t a t e (1) ; B0 <= n e x t s t a t e (0) ;

end process p1 ;
end architecture behav ioura l ;
−−
l ibrary work ;
use work . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture dataf low of te s tbench i s
signal r e s e t , c lk , b0 , b1 , b2 , b3 , f : b i t ;
begin
p1 : process i s

begin
c l k <= ’ 0 ’ ; wait for 10 ns ;
c l k <= ’ 1 ’ ; wait for 10 ns ;

end process p1 ;
−−
p2 : process i s

begin
r e s e t <= ’ 1 ’ ; wait for 10 ns ;
r e s e t <= ’ 0 ’ ; wait for 2000 ns ;

end process p2 ;
−−
d1 : entity t e s t v e c t o r b port map(r e s e t , c lk , b0 , b1 , b2 , b3) ;
−−
−− Behavioura l model o f combinat iona l c i r c u i t
p3 : process (b3 , b2 , b1 , b0) i s

variable SEL : b i t v e c t o r (3 downto 0) ;
begin

SEL := b3&b2&b1&b0 ;
i f (SEL = ”0010 ”) then f <= ’ 1 ’ ;

107

e l s i f (SEL = ”0000 ”) then f <= ’ 1 ’ ;
e l s i f (SEL = ”1111 ”) then f <= ’ 1 ’ ;
e l s i f (SEL = ”0001 ”) then f <= ’ 1 ’ ;
e l s i f (SEL = ”0011 ”) then f <= ’ 1 ’ ;
else f <= ’ 0 ’ ;
end i f ;

end process p3 ;
end architecture dataf low ;

dtime

reset.X
b0.X
b1.X
b2.X
b3.X
f.X

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n 120n 130n 140n 150n 160n 170n

Figure 5.13: Sample simulation waveforms for VHDL editor example 3 design.

5.9.5 Linking VHDL entity-architecture models to Qucs schematic
device symbols

VHDL was originally developed as a hardware description language for specifying digital
systems. Indeed many engineers still prefer to describe digital systems entirely in VHDL
statements rather than use schematic drawings. Once written VHDL code is saved as a
text file and becomes the input data for a VHDL compiler/simulation package. Through
popular demand a number of digital synthesis/simulator CAD tools18 have started to in-
clude a facility that links VHDL model code to a schematic capture symbol. It is then,
of course, possible to use a schematic diagram as the main entry media19 when designing
and simulating a digital design. Qucs release 0.0.9 has such a facility, allowing VHDL code
models to be linked to schematic symbols. When drawing digital design schematics, these
user defined symbols may be mixed with the Qucs predefined digital symbols and other user
defined subcircuit symbols. The process for linking VHDL code to Qucs schematic drawing
symbols is straightforward and will be illustrated in these notes through two examples.

• Example 4: A 4 bit test vector pattern generator.

Shown in Table 5.4 is the VHDL entity-architecture model listing for a 4 bit binary
pattern generator. The VHDL code is identical to the test vector code introduced

18See for example the XILINX, WebPACK software at http//www.xilinx.com/ise/logic_design_prod/
webpack.htm.

19Please note that at the start of the VHDL simulation process schematic drawings are converted into a
VHDL text file.

108

http//www.xilinx.com/ise/logic_design_prod/webpack.htm
http//www.xilinx.com/ise/logic_design_prod/webpack.htm

in the third VHDL editor example. After entering the VHDL entity-architecture
model code using the Qucs VHDL editor the finished text is saved in a file with a
suitable name and file extension vhdl. Qucs then lists the model under the VHDL
project category. Simply clicking on a model name in the VHDL category, with
the left hand mouse button, then moving the mouse pointer to a suitable position
on a schematic, causes Qucs to move a symbol that represents the model onto the
schematic drawing sheet. Placement of the symbol at the position located by the
mouse pointer is achieved by clicking the left hand mouse button. The procedure is
identical to that used to select and place the Qucs predefined symbols on a schematic
drawing. Qucs automatically generates a rectangular symbol with a name called
VHDL that has the same number of pins as the port statement listed in the VHDL
model entity statement. Each of the pins is given a name that corresponds to a name
in the entity statement. Qucs fixes the order of the pins on the generated symbol.
It appears that it is not possible to edit this symbol. However, subcircuit in, out
or inout port symbols can be attached to symbol VHDL and a user edited symbol
generated. Fig. 5.14 shows the Qucs generated VHDL symbol with attached ports
for the model listed in Table 5.4. The edited symbol for the 4 bit binary pattern
generator is illustrated in Fig. 5.15. Notice that in Fig. 5.15 the order of the pins has
been changed to reflect the natural order for a device with it’s input pins on the left
and output pins on the right. VHDL model symbols can also be generated by placing
the VHDL file component, this is located in the digital components viewlist, on a
schematic. On editing the VHDL file name property of this device to the name of a
VHDL entity-architecture model file, Qucs automatically generates a VHDL symbol.
Defining your own symbol then proceeds in a similar fashion to the way described
above.

RESET
Num=1

B0
Num=3

B2
Num=5

B1
Num=4

B3
Num=6

CLOCK
Num=2

vhdl

RESET CLOCK

B0 B1

B2 B3

X1

Figure 5.14: Qucs generated VHDL symbol with subcircuit ports for test pattern generator.

109

entity patgen 4b i t i s
port (RESET, CLOCK : in b i t ;

B0 , B1 , B2 , B3 : out b i t
) ;

end entity patgen 4b i t ;
−−
architecture behav ioura l of patgen 4b i t i s
begin
p1 : process (RESET, CLOCK) i s

variable p r e s e n t s t a t e , n e x t s t a t e :
b i t v e c t o r (3 downto 0):= ”0000 ” ;

begin
i f (RESET = ’1 ’) then n e x t s t a t e := ”0000 ” ;
e l s i f (CLOCK’ event and CLOCK= ’1 ’) then
p r e s e n t s t a t e := n e x t s t a t e ;
case p r e s e n t s t a t e i s
when ”0000 ” => n e x t s t a t e := ”0001 ” ;
when ”0001 ” => n e x t s t a t e := ”0010 ” ;
when ”0010 ” => n e x t s t a t e := ”0011 ” ;
when ”0011 ” => n e x t s t a t e := ”0100 ” ;
when ”0100 ” => n e x t s t a t e := ”0101 ” ;
when ”0101 ” => n e x t s t a t e := ”0110 ” ;
when ”0110 ” => n e x t s t a t e := ”0111 ” ;
when ”0111 ” => n e x t s t a t e := ”1000 ” ;
when ”1000 ” => n e x t s t a t e := ”1001 ” ;
when ”1001 ” => n e x t s t a t e := ”1010 ” ;
when ”1010 ” => n e x t s t a t e := ”1011 ” ;
when ”1011 ” => n e x t s t a t e := ”1100 ” ;
when ”1100 ” => n e x t s t a t e := ”1101 ” ;
when ”1101 ” => n e x t s t a t e := ”1110 ” ;
when ”1110 ” => n e x t s t a t e := ”1111 ” ;
when ”1111 ” => n e x t s t a t e := ”0000 ” ;

end case ;
end i f ;
B3 <= n e x t s t a t e (3) ; B2 <= n e x t s t a t e (2) ;
B1 <= n e x t s t a t e (1) ; B0 <= n e x t s t a t e (0) ;

end process p1 ;
end architecture behav ioura l ;

Table 5.4: VHDL code for a 4 bit pattern generator.

110

B2

B3

B1

B0RESET

CLOCK

R

patgen
4bit

B0

B1

B2
B3

SUB
File=name

Figure 5.15: User defined 4 bit pattern generator symbol.

−− Fu l l adder − 1 b i t
entity f u l l a d d e r i s

port (a , b , c in : in b i t ;
sum , cout : out b i t

) ;
end entity f u l l a d d e r ;
−−
architecture dataf low of f u l l a d d e r i s
begin

sum <= (a xor b) xor c in ;
cout <= (a and b) or (a and c in) or (b and c in) ;

end architecture dataf low ;

Table 5.5: VHDL code for a 1 bit full adder.

• Example 5: A 4 bit full adder.

VHDL model symbols may be combined with either the Qucs predefined digital
component symbols or other subcircuit symbols. In this example a VHDL model
for a simple one bit full adder is connected four times in a serial fashion to form a
4 bit full adder. The VHDL model code for a simple one bit full adder is given in
Table 5.5. The associated symbol diagrams for the one bit full adder are illustrated
in Fig. 5.16 and Fig. 5.17.

111

vhdl

a b

cin sum

cout

X1

a

cin

sum

cout

b

Figure 5.16: Qucs generated VHDL symbol with subcircuit ports for one bit full adder.

b

a
�

cin

sum

cout
CI

CO

SUB
File=name

Figure 5.17: User defined one bit full symbol.

Figure 5.18 shows the schematic for a simple 4 bit ripple adder. The corresponding
user defined symbol for the 4 bit full adder is given in Fig. 5.19.

112

a0

a1

a3

a4

b0

b1

b2

cin

sum0

sum1

sum2

sum3

coutb3

�

CI
CO

SUB4

�

CI
CO

SUB3

�

CI
CO

SUB2

�

CI
CO

SUB1

Figure 5.18: 4 bit full adder schematic.

5.9.6 Generating VHDL code from Qucs schematic drawings

Pressing key F2 causes Qucs to simulate the design entered by the Qucs user. The input
data for a simulation is either a VHDL text file, saved from the VHDL text editor, or a
VHDL code file generated by Qucs using the information encoded on a schematic drawing.
In this section of these tutorial notes a larger design is introduced and the resulting VHDL
code and simulation results are discussed. The example chosen for this purpose is a 4 bit
by 4 bit combinational digital multiplier. Both the 4 bit pattern generator and the 4 bit
full adder outlined in the last section form part of the central core of the 4 bit multiplier
design and it’s associated testbench. Table 5.6 shows the multiplication product table for
a 4 bit by 4 bit combinational binary multiplier. Inputs to the device are binary bits a3
a2 a1 a0 and b3 b2 b1 b0. The 4 by 4 multiplier device requires 16 and gates (to generate
the multiplier product terms), three four bit full adders (to sum the output r terms) and
two 4 bit pattern generators to test the 256 possible input states. The multiplier output is
represented in Table 5.6 by r7 r6 r5 r4 r3 r2 r1 and r0. The circuit schematic for the 4 bit
by 4 bit multiplier and test bench are given in Fig. 5.20.

113

a0

a1

a3

a4

b0

b1

b2

b3

cin

sum0

sum1

sum2

sum3

cout

�

0

3

0

3

}

}

a

b

{�

CO

CI

SUB
File=name

Figure 5.19: User defined 4 bit full adder symbol.

b3 b2 b1 b0
a3 a2 a1 a0
a0b3 a0b2 a0b1 a0b0

a1b3 a1b2 a1b1 a1b0
a2b3 a2b2 a2b1 a2b0

a3b3 a3b2 a3b1 a3b0
r7 r6 r5 r4 r3 r2 r1 r0

Table 5.6: Product table for a 4 bit by 4 bit combinational multiplier.

The VHDL code for this example is presented in the following listing. This listing was
generated by Qucs20. A small section of the TimeList waveform plot for the digital mul-
tiplier is shown in Fig. 5.21. At 1.74 micro seconds input a is ”0101”, input b is ”0111”
and the output r is ”00100011” which is 35 in decimal. Taking a few random checks of
the simulation results indicates that the 4 bit by 4 bit multiplier design works correctly.
Notice that the VHDL code generated by Qucs for the 4 bit multiplier does not contain any
propagation delay timing data. This could be added to the and gates, if required. However,
at this stage in the development of Qucs digital simulation passing timing data, and other
parameters, from device symbols generated from VHDL models has not been implemented
yet. The use of VHDL generics is an obvious way this could be done. Generics are allowed,

20Some readers will have noticed that the naming scheme for internal signal nets is different in the multiplier
VHDL listing when compared to the VHDL listings in the first version of these notes. Towards the end
of the 0.0.9 development phase the naming convention employed by Qucs was changed to give a more
flexible structure.

114

of course, in text based VHDL simulations.

115

R

patgen
4bit

B
0

B
1

B
2

B
3

SUB3

R

patgen
4bit

B
0

B
1

B
2

B
3

SUB1

R

CLOCK

1

Y1

&

Y2&

Y3&

Y4&

Y5

0 SUB5

&

Y6&

Y7&

Y8&

Y9&

Y10&

Y11&

Y12&

Y13

�

0

3

0

3

}

}

a

b

{�

CO

CI

SUB4

�

0

3

0

3

}

}

a

b

{�

CO

CI

SUB6

&

Y14&

Y15&

Y16&

Y17

�

0

3

0

3

}

}

a

b

{�

CO

CI

SUB7
File=full_adder_4 bit.sch

digital
simulation

Digi1
Type=TimeList
time=5000 ns

R

CLOCK

R3

R4

R5

R6

R7

R0

R1

R2

A0A1A2A3 B0B1B2B3

Figure 5.20: A 4 bit by 4 bit combinational digital multiplier.

116

−− Qucs 0 . 0 . 9
−− /mnt/hda2/ vhd l c omp l i b p r j / mu l t i p l i e r 4 b x 4 b i t . sch

entity patgen 4b i t i s
port (RESET, CLOCK : in b i t ;

B0 , B1 , B2 , B3 : out b i t
) ;

end entity patgen 4b i t ;
−−
architecture behav ioura l of patgen 4b i t i s
begin

p1 : process (RESET, CLOCK) i s
variable p r e s e n t s t a t e , n e x t s t a t e :

b i t v e c t o r (3 downto 0) := ”0000 ” ;
begin

i f (RESET = ’1 ’) then n e x t s t a t e := ”0000 ” ;
e l s i f (CLOCK’ event and CLOCK= ’1 ’) then

p r e s e n t s t a t e := n e x t s t a t e ;
case p r e s e n t s t a t e i s

when ”0000 ” => n e x t s t a t e := ”0001 ” ;
when ”0001 ” => n e x t s t a t e := ”0010 ” ;
when ”0010 ” => n e x t s t a t e := ”0011 ” ;
when ”0011 ” => n e x t s t a t e := ”0100 ” ;
when ”0100 ” => n e x t s t a t e := ”0101 ” ;
when ”0101 ” => n e x t s t a t e := ”0110 ” ;
when ”0110 ” => n e x t s t a t e := ”0111 ” ;
when ”0111 ” => n e x t s t a t e := ”1000 ” ;
when ”1000 ” => n e x t s t a t e := ”1001 ” ;
when ”1001 ” => n e x t s t a t e := ”1010 ” ;
when ”1010 ” => n e x t s t a t e := ”1011 ” ;
when ”1011 ” => n e x t s t a t e := ”1100 ” ;
when ”1100 ” => n e x t s t a t e := ”1101 ” ;
when ”1101 ” => n e x t s t a t e := ”1110 ” ;
when ”1110 ” => n e x t s t a t e := ”1111 ” ;
when ”1111 ” => n e x t s t a t e := ”0000 ” ;

end case ;
end i f ;

B3 <= n e x t s t a t e (3) ; B2 <= n e x t s t a t e (2) ;
B1 <= n e x t s t a t e (1) ; B0 <= n e x t s t a t e (0) ;

end process p1 ;
end architecture behav ioura l ;

entity Sub patgen 4bit i s
port (net net0 : in b i t ;

net net5 : in b i t ;

117

net outne t ne t1 : out b i t ;
ne t outne t ne t3 : out b i t ;
ne t outne t ne t2 : out b i t ;
ne t outne t ne t4 : out b i t) ;

end entity ;
use work . a l l ;
architecture Arch Sub patgen 4bit of Sub patgen 4bit i s

signal net net1 ,
net net2 ,
net net3 ,
net net4 : b i t ;

begin
net outne t ne t1 <= net net1 or ’ 0 ’ ;
ne t outne t ne t2 <= net net2 or ’ 0 ’ ;
ne t outne t ne t3 <= net net3 or ’ 0 ’ ;
ne t outne t ne t4 <= net net4 or ’ 0 ’ ;
X1 : entity patgen 4b i t port map (net net0 , net net5 ,

net net1 , net net3 , net net2 , net net4) ;
end architecture ;

−− l o g i c z e r o . vhd l
entity l o g i c z e r o i s

port (Y : out b i t
) ;

end entity l o g i c z e r o ;
−−
architecture dataf low of l o g i c z e r o i s
begin

Y <= ’ 0 ’ ;
end architecture dataf low ;

entity S u b l o g i c z e r o i s
port (net outnetY : out b i t) ;

end entity ;
use work . a l l ;
architecture Arch Sub log i c ze ro of S u b l o g i c z e r o i s

signal netY : b i t ;
begin

X1 : entity l o g i c z e r o port map (netY) ;
net outnetY <= netY or ’ 0 ’ ;

end architecture ;

118

−− Fu l l adder − 1 b i t
entity f u l l a d d e r i s

port (a , b , c in : in b i t ;
sum , cout : out b i t

) ;
end entity f u l l a d d e r ;
−−
architecture dataf low of f u l l a d d e r i s
begin

sum <= (a xor b) xor c in ;
cout <= (a and b) or (a and c in) or (b and c in) ;

end architecture dataf low ;

entity S u b f u l l a d d e r 1 b i t i s
port (net net0 : in b i t ;

net net1 : in b i t ;
net net2 : in b i t ;
ne t outne t ne t3 : out b i t ;
ne t outne t ne t4 : out b i t) ;

end entity ;
use work . a l l ;
architecture Arch Sub fu l l adde r 1b i t of S u b f u l l a d d e r 1 b i t i s

signal net net3 ,
net net4 : b i t ;

begin
X1 : entity f u l l a d d e r port map (net net0 , net net1 ,

net net2 , net net3 , net net4) ;
ne t outne t ne t3 <= net net3 or ’ 0 ’ ;
ne t outne t ne t4 <= net net4 or ’ 0 ’ ;

end architecture ;

entity S u b f u l l a d d e r 4 b i t i s
port (net net0 : in b i t ;

net net1 : in b i t ;
net net2 : in b i t ;
net net3 : in b i t ;
net net4 : in b i t ;
net net5 : in b i t ;
net net6 : in b i t ;
net net13 : in b i t ;
net net7 : in b i t ;
ne t outne t ne t8 : out b i t ;
ne t outne t ne t9 : out b i t ;

119

net outnet net10 : out b i t ;
ne t outnet net11 : out b i t ;
ne t outnet net12 : out b i t) ;

end entity ;
use work . a l l ;
architecture Arch Sub fu l l adde r 4b i t of S u b f u l l a d d e r 4 b i t i s

signal net net14 ,
net net15 ,
net net16 ,
net net8 ,
net net9 ,
net net10 ,
net net11 ,
net net12 : b i t ;

begin
net outne t ne t8 <= net net8 or ’ 0 ’ ;
ne t outne t ne t9 <= net net9 or ’ 0 ’ ;
ne t outnet net10 <= net net10 or ’ 0 ’ ;
ne t outnet net11 <= net net11 or ’ 0 ’ ;
ne t outnet net12 <= net net12 or ’ 0 ’ ;
SUB4 : entity S u b f u l l a d d e r 1 b i t port map (net net3 , net net13 ,

net net14 , net net11 , net net12) ;
SUB3 : entity S u b f u l l a d d e r 1 b i t port map (net net2 , net net6 ,

net net15 , net net10 , net net14) ;
SUB2 : entity S u b f u l l a d d e r 1 b i t port map (net net1 , net net5 ,

net net16 , net net9 , net net15) ;
SUB1 : entity S u b f u l l a d d e r 1 b i t port map (net net0 , net net4 ,

net net7 , net net8 , net net16) ;
end architecture ;

entity TestBench i s
end entity ;
use work . a l l ;

architecture Arch TestBench of TestBench i s
signal netA0 , netA1 , netA2 , netA3 , netR , netB0 ,

netB1 , netB2 , netB3 , netR0 , netR1 , netR2 ,
netR3 , netR4 , netR5 , netR6 , netR7 , netCLOCK,
net net0 , net net1 , net net2 , net net3 , net net4 ,
net net5 , net net6 , net net7 , net net8 , net net9 ,
net net10 , net net11 , net net12 , net net13 , net net14 ,
net net15 , net net16 , net net17 , net net18 , net net19 ,
net net20 , net net21 , net net22 , net net23 ,
net net24 : b i t ;

begin

120

SUB3 : entity Sub patgen 4bit port map (netR , net net0 ,
netA0 , netA1 , netA2 , netA3) ;

SUB1 : entity Sub patgen 4bit port map (netR , netCLOCK,
netB0 , netB1 , netB2 , netB3) ;

R: process
begin

netR <= ’ 1 ’ ; wait for 10 ns ;
netR <= ’ 0 ’ ; wait for 2000 ns ;

end process ;

CLOCK: process
begin

netCLOCK <= ’ 0 ’ ; wait for 10 ns ;
netCLOCK <= ’ 1 ’ ; wait for 10 ns ;

end process ;

ne t net0 <= not netB3 ;
netR0 <= netA0 and netB0 ;
net net1 <= netA0 and netB1 ;
net net2 <= netA0 and netB2 ;
net net3 <= netA0 and netB3 ;
SUB5 : entity S u b l o g i c z e r o port map (net net4) ;
net net5 <= netA1 and netB0 ;
net net6 <= netA1 and netB1 ;
net net7 <= netA1 and netB2 ;
net net8 <= netA1 and netB3 ;
net net9 <= netA2 and netB0 ;
net net10 <= netA2 and netB1 ;
net net11 <= netA2 and netB2 ;
net net12 <= netA2 and netB3 ;
SUB4 : entity S u b f u l l a d d e r 4 b i t port map (net net1 , net net2 ,

net net3 , net net4 , net net5 , net net6 , net net7 ,
net net8 , net net4 , netR1 , net net13 , net net14 ,
net net15 , net net16) ;

SUB6 : entity S u b f u l l a d d e r 4 b i t port map (net net13 , net net14 ,
net net15 , net net16 , net net9 , net net10 , net net11 ,
net net12 , net net4 , netR2 , net net17 , net net18 ,
net net19 , net net20) ;

net net21 <= netA3 and netB0 ;
net net22 <= netA3 and netB1 ;
net net23 <= netA3 and netB2 ;
net net24 <= netA3 and netB3 ;
SUB7 : entity S u b f u l l a d d e r 4 b i t port map (net net17 , net net18 ,

121

net net19 , net net20 , net net21 , net net22 ,
net net23 , net net24 , net net4 , netR3 , netR4 ,
netR5 , netR6 , netR7) ;

end architecture ;

dtime

clock.X
a0.X
a1.X
a2.X
a3.X
b0.X
b1.X
b2.X
b3.X
r0.X
r1.X
r2.X
r3.X
r4.X
r5.X
r6.X
r7.X

1.67u 1.68u 1.69u 1.7u 1.71u 1.72u 1.73u 1.74u 1.75u 1.76u 1.77u 1.78u 1.79u

Figure 5.21: A section of the 4 bit by 4 bit combinational digital multiplier TimeList output
waveforms.

5.10 Update number two: September 2006

Update number two in this tutorial series reports on the major changes that have taken
place to Qucs digital simulation since the first update was posted on the Qucs Web site
roughly three months ago. During this period a number of significant, and very critical,
extensions have been implemented. Previous releases concentrated on establishing a funda-
mental base for digital circuit simulation using the VHDL language. The primary vehicle
for representing circuit signals being the VHDL bit and bit-vector signal types. The next
release of Qucs (version 0.0.10) and FreeHDL (version 0.0.3) extends the allowed signal
types to include IEEE std_logic_1164 nine level logic, integers, and reals. Readers will
appreciate that these changes are the result of a great deal of work by the Qucs team and
must be considered as very much work in progress because not all the features offered by
the FreeHDL implementation of the VHDL language are currently available via the Qucs
schematic capture and VHDL text file simulation routes. Although a significant amount

122

of testing has taken place it is likely that software bugs will come to light as more Qucs
users try the new features - if you find a bug please report it by posting a note on the
Qucs Web site. Adding new signal types to Qucs digital simulation affects all sections of
the simulation route from schematic capture to plotting and tabulating input and output
signals. Hence, although it may seem the wrong way round, the place to first implement
the necessary changes to accommodate the new signal types is at the simulation results
reporting stages of the Qucs package. In release 0.0.10 no attempt has been made to
add the new signal types to the schematic capture part of the Qucs package.21 Recent
work on the digital sections of the Qucs package has concentrated on (1) improvements to
VHDL language entry using the Qucs colour coded VHDL text editor22, (2) modifications
to FreeHDL which allow a cleaner interface between Qucs and FreeHDL, (3) upgrades to
the data conversion of simulation results from the FreeHDL value change dump format to
the native Qucs format, and (4) major changes to the results reporting routines that are
accessed from the Qucs diagrams icon dialogue. A detailed list of the software changes and
bug fixes can be found in the Qucs and FreeHDL change log files.

5.10.1 Simulating VHDL code using Qucs and FreeHDL.

The flow diagram drawn in Fig. 5.10 shows the relationship between Qucs and FreeHDL,
and the sequence that takes place during digital circuit simulation. This flow diagram
does not however, outline the details of the stages that are performed when converting (1)
VHDL circuit code into a machine code simulation program, and (2) simulation output
results into a format that can be plotted and tabulated by Qucs. These are illustrated
in the flow diagram presented in Fig. 5.22. The shell script qucsdigi controls each of the
stages in this sequence. A basic understanding of the process employed by Qucs and
FreeHDL is needed if users of the software are to be able to write meaningful VHDL code
and simulate it using the two packages. VHDL code is either generated from a schematic
diagram automatically by Qucs or entered using the Qucs VHDL text editor. The use of
the schematic entry route was described in update one of these tutorial notes. However, a
number of readers will probably have spotted that included in the VHDL code generated
by Qucs are references to VHDL libraries. The VHDL language uses libraries to provide
features that are not specified in the basic language definition but are commonly used by
all language processing systems; two such libraries are STD and IEEE. When simulating
digital circuits a basic knowledge of the structure of a simulation task and how these employ
VHDL libraries is essential. This implies that users of the Qucs/FreeHDL software must
appreciate how the system compiles and simulates a VHDL circuit simulation task. Once
the VHDL simulation code has been entered via the VHDL text editor clicking the Qucs
simulation button runs shell script qucsdigi performing the sequence shown in Fig. 5.2223.

21Adding new signal types to Qucs schematic capture is on the to-do list.
22A number of editor bugs have been fixed and it is now possible for users to define their own colour

scheme for the various classes of VHDL reserved words and data types.
23For the FreeHDL package to operate correctly the directory where the software is installed must be

included in the shell PATH from which Qucs is launched.

123

Program freeehdl-v2cc converts VHDL code into C++ functions. These are then compiled
along with a main C++ function. The next stage in the sequence links the compiled object
code with the object code from any references to items in the predefined VHDL libraries to
produce an executable digital simulation program. This is then run by Qucs outputting a
set of simulation results in value change dump (VCD) format24. Finally a program called
qucsconv converts the VCD simulation results into the Qucs native data format ready for
post processing as graphical or tabular diagrams by Qucs.

24The value change dump language was originally designed as a simulation waveform interchange
format for Verilog HDL. The specification of the VCD format can be found at http://www-
ee.eng.hawaii.edu/ msmith/ASICs/HTML/Verilog/LRM/HTML/15/ch15.2.htm

124

FreeHDL Compile
C++ main function

RUN file_name
simulation program

QUCSCONV
VCD -> QUCS

data conversion

ERROR and other
 results data

VHDL source text

FreeHDL V2CC
VHDL -> C++
conversion

FreeHDL Compile
C++ functions

FreeHDL Linking

QUCS TimeList plot

QUCS Truth table
QUCS Tabulation

VHDL std library

IEEE library

Linking....

Simulating....

Running VCD
conversion...

Compiling main...

Compiling functions...

Running C++
conversion....

file_name.vhdl OR
file_name.vhd

file_name.cc

file_name.o

file_name_main_.o

standard.o

std_logic_1164.o file_name

log.txt

file_name.vcd

}

log.txtlog.txt

Figure 5.22: Detailed flow diagram showing VHDL code compilation and simulation results
processing.

125

5.10.2 VHDL predefined packages and libraries.

All VHDL language processing systems provide a predefined VHDL package called stan-
dard. This package defines many of the fundamental VHDL data types, for example bit,
character, integer and real. The predefined types, subtypes and other functions in the
package standard are stored in a library called STD. The FreeHDL version of library STD
includes an additional VHDL package called textio which is used to input and output signal
data from and to files. A second library called IEEE defines (1) multivalued logic signals
defined by nine different encoding values, making it possible to model digital circuits that
are composed from different technology components, (2) logic signal subtypes and (3) an
extensive range of useful functions, procedures and overloaded operators. The FreeHDL
version of the IEEE library consists of the following packages:

1. std_logic_1164

2. numeric_bit

3. math_real

4. numeric_std

5. std_logic_arith

6. std_logic_unsigned

7. vital_timing

One other library is always defined by VHDL code processing systems namely the work
library. This library holds user compiled VHDL entity/architecture design units.

5.10.3 VHDL simulation code structures.

In its most basic form VHDL circuit simulation code is structured as an entity-architecture
test bench which includes input signal test information.25 An example outline of the basic
format is

entity te s tbench i s
−− e n t i t y body s ta tements
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;

25Test signals are often called test vectors.

126

VHDL data types, functions and operators in package standard are always visible to VHDL
test bench code and reference to their use need not be added explicitly. However, if the
test bench entity-architecture uses data types or other items defined in other libraries,
for example the std_logic type in the IEEE library, then reference to them needs to be
added before each entity-architecture pair where they are used. Libraries are referenced
using the VHDL library and use statements. An example showing how these statements
are employed is outlined in the following VHDL code segment:

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity te s tbench i s
−− e n t i t y body s ta tements
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;

Here the VHDL code word all signifies that all items in a specific library are to be made
available for use in the following entity/architecture pair; testbench in the above example.
If more than one library is to be used then a library/use statement is needed for each
library reference. Most complete VHDL circuit simulation programs consist of more than
one entity/architecture pair. In such cases the circuit test bench, with its signal test vectors,
must be the last entry in the program. An example of a more complex VHDL program
structure is

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity comp1 i s
−− e n t i t y body s ta tements
end entity comp1 ;
−−
architecture behav ioura l of comp1 i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity comp2 i s
−− e n t i t y body s ta tements
end entity comp2 ;
−−
architecture behav ioura l of comp2 i s
−− a r c h i t e c t u r e body s ta tements

127

end architecture behav ioura l ;

−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
use work . a l l ;
−−
entity te s tbench i s
−− e n t i t y body s ta tements
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;

During the conversion of VHDL code to a machine code simulation program each entity/ar-
chitecture pair, prior to the final test bench entry, is compiled as a separate design unit and
stored in the work library26. Compiled design units held in the work library can be refer-
enced in other entity/architecture models provided the VHDL statement use work.all;27 is
inserted in the VHDL simulation code prior to each entity/architecture statement where
they are referenced.

26The testbench entity/architecture pair is also, of course, compiled but this design unit is the one that is
run as the executable simulation program.

27References to individual items are also allowed by inserting, for example, use.work.comb1;
use.work.comb2; in the VHDL code.

128

5.10.4 VHDL data types.

VHDL data
 types

Scalar

Integer Real Enumerated Physical

File Access Composite

Array Record

Figure 5.23: VHDL data types

The chart shown in Fig. 5.23 indicates the different data types that are available in the
VHDL language. FreeHDL implements all these data types. In practical circuit simula-
tion the different VHDL data types are normally used to specify (1) signals, (2) variables
and (3) constants28. During simulation Qucs/FreeHDL automatically stores the values
of integer, real and enumerated bit signals as simulation time progresses. Furthermore,
bit_vector and IEEE signal types including std_logic_vector are also stored. Signals
of these types are then available for plotting and tabulation using the Timing, Truth ta-
ble, Tabular and Cartesian output diagrams. Selected elements in user defined composite
signals, those that are stored in arrays for example29, can be assigned to the basic signal
types then displayed.30. An example of how this is done is given in later sections of these
update tutorial notes. Note - the values of variables and constants are not recorded during
simulation.

28Type file is of course different in that it is used to store either test vectors, component data such as
ROM contents and output simulation results.

29Please note that signal types based on the composite type record will probably cause the Qucs simulation
cycle to fail - work on this data type has been added to the to-do list.

30Qucs/FreeHDL also automatically collects waveform data for composite signals based on arrays of bit
and IEEE signal types. However, in the case of large arrays care is needed when plotting or tabulating
these directly because the entire contents of an array is output each time a signal is displayed.

129

5.10.5 An example VHDL simulation employing integer signals.

The following VHDL code demonstrates how the integer data type can be used to represent
signals. In this example signals A, B change state on the rising edge of clock clk. The
code tests the addition of integer signals and constants using arithmetic operators defined
in library STD.31 The results from this simulation are shown in Fig. 5.24.

−− A very ba s i c t e s t o f data type i n t e g e r .
entity te s tbench i s
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
signal A, B, C : i n t e g e r := 0 ;
signal c l k : b i t ;
begin
p0 : process i s −− Generate c l o c k s i g n a l .

begin
c l k <= ’ 0 ’ ; wait for 10 ns ;
c l k <= ’ 1 ’ ; wait for 10 ns ;

end process p0 ;
−−
p1 : process (c l k) i s

begin
i f (c lk ’ event and c l k = ’1 ’) then

A <= A + 1 ;
B <= B + 2 ;

end i f ;
end process p1 ;

C <= A + B ;
end architecture behav ioura l ;

dtime

clk.X
a.R
b.R
c.R

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n

0 1 1 2 2 3 3 4 4 5
0 2 2 4 4 6 6 8 8 10
0 3 3 6 6 9 9 12 12 15

Figure 5.24: Output results for a simple test bench example employing integer signals.

5.10.6 Multivalued logic.

Although signal types bit and bit-vector are widely employed when simulating digital sys-
tems one of their great weaknesses is the fact that it is difficult to represent signal bus

31The specification for the FreeHDL library STD can be found in text file freehdl-0.0.3/std/standard.vhdl.

130

systems simply using only logic ’0’ and logic ’1’ signal encoding. Moreover, circuits where
bus signal contention occurs often result in simulation failure. The IEEE std_logic_1164

package overcomes this limitation through the introduction of a multivalued logic system
which defines nine different logic values to represent signal types and signal strengths. Not
only is the bus contention problem solved through logic resolving functions but the mul-
tivalued logic system allows devices constructed from different manufacturing technologies
to be simulated at the same time, ensuring that the simulation process mirrors real circuit
design practices. The next two simulation examples introduce the nine value logic system
and demonstrate it’s use in the design of digital bus systems. Signals of type real are also
introduced to show their representation by Qucs. Listed below is the VHDL code for a
basic simulation which generates a set of IEEE std_logic, integer and real signals. Fig-
ure 5.25 illustrates how the Qucs Timing diagram displays different signal types. A section
of tabulated results are also given in Fig. 5.26.

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
signal c l k : b i t ;
signal bv1 : b i t v e c t o r (8 downto 0) ;
signal s t d l 1 : s t d l o g i c v e c t o r (8 downto 0) ;
signal INT1 : i n t e g e r := 0 ;
signal INT2 : i n t e g e r := 99 ;
signal R1 : r e a l := 0 . 3 3 ;
signal R2 : r e a l := 9 9 . 0 ;
signal R3 : r e a l := 0 . 0 ;
signal R4 : r e a l := 0 . 0 ;
begin
p0 : process i s

begin
c l k <= ’ 0 ’ ; wait for 10 ns ;
c l k <= ’ 1 ’ ; wait for 10 ns ;

end process p0 ;
−−
p1 : process (c l k) i s

variable v1 : i n t e g e r := 0 ;
begin

i f (c lk ’ event and c l k = ’1 ’) then
v1 := v1+1;
case v1 i s

when 1 => bv1 <= ”000000000 ” ; s t d l 1 <= ”000000000 ” ;

131

when 2 => bv1 <= ”000000001 ” ; s t d l 1 <= ”000000001 ” ;
when 3 => bv1 <= ”000000011 ” ; s t d l 1 <= ”00000001X” ;
when 4 => bv1 <= ”000000111 ” ; s t d l 1 <= ”0000001XZ” ;
when 5 => bv1 <= ”000001111 ” ; s t d l 1 <= ”000001XZU” ;
when 6 => bv1 <= ”000011111 ” ; s t d l 1 <= ”00001XZUW” ;
when 7 => bv1 <= ”000111111 ” ; s t d l 1 <= ”0001XZUWL” ;
when 8 => bv1 <= ”001111111 ” ; s t d l 1 <= ”001XZUWLH” ;
when 9 => bv1 <= ”111111111 ” ; s t d l 1 <= ”01XZUWLH−” ;
when others => v1 := 0 ;

end case ;
end i f ;

end process p1 ;
p3 : process (c l k) i s

begin
i f (c lk ’ event and c l k = ’1 ’) then

INT1 <= INT1 + 1 ;
INT2 <= INT2 −20;

end i f ;
−−

i f (INT1 >= 9) then
INT1 <= 0 ;
INT2 <= 99 ;

end i f ;
end process p3 ;

−−
p4 : process (c l k) i s

Variable V2 : r e a l ;
begin

i f (c lk ’ event and c l k = ’1 ’) then
R1 <= R1 + 1 . 0 ;
R2 <= R2 −20.0;
R3 <= R1∗R2 ;
R4 <= R2/(R1+0.0001) ;

end i f ;
−−

i f (R1 >= 2 0 . 0) then
R1 <= 0 . 0 ;
R2 <= 9 9 . 0 ;

end i f ;
end process p4 ;

end architecture behav ioura l ;

132

dtime

clk.X
r1.R
r2.R
r3.R
r4.R
stdl1.X
int1.R
int2.R
bv1.X

0 10n 20n 30n 40n 50n 60n 70n

0.33 1.33 1.33 2.33 2.33 3.33 3.33 4.33
99 79 79 59 59 39 39 19
0 32.67 32.67 105.07 105.07 137.47 137.47 129.87
0 299.909 299.909 59.394 59.394 25.3208 25.3208 11.7114
XXXXXXXXX 000000000 000000000 000000001 000000001 00000001X 00000001X 0000001XZ
0 1 1 2 2 3 3 4
99 79 79 59 59 39 39 19
000000000 000000000 000000000 000000001 000000001 000000011 000000011 000000111

dtime

clk.X
r1.R
r2.R
r3.R
r4.R
stdl1.X
int1.R
int2.R
bv1.X

70n 80n 90n 100n 110n 120n 130n 140n

4.33 4.33 5.33 5.33 6.33 6.33 7.33 7.33
19 19 1 1 21 21 41 41
129.87 129.87 82.27 82.27 5.33 5.33 132.93 132.93
11.7114 11.7114 4.38789 4.38789 0.187614 0.187614 3.31748 3.31748
0000001XZ 0000001XZ 000001XZX 000001XZX 00001XZX0 00001XZX0 0001XZX00 0001XZX00
4 4 5 5 6 6 7 7
19 19 1 1 21 21 41 41
000000111 000000111 000001111 000001111 000011111 000011111 000111111 000111111

Figure 5.25: Output results illustrating the TimeList representation of signals.

The VCD waveform interchange standard encodes digital signals as four different logic
levels. These are ’0’, ’1’, ’Z’ (high impedance) and ’X’ (unknown). Table 5.7 lists how
the nine ieee.std_logic signal levels are represented using the VCD format. Until the
VCD standard is revised the Qucs/FreeHDL package is restricted to displaying simulation
output data using the basic ’0’, ’1’, ’Z’ and ’X’ signal encoding. The next example shows
how the IEEE std_logic signal type can be used to simulate bus logic. The demonstration
has been kept simple in order to keep the VHDL code short. The code fragment simulates
two tri-state buffers which pass their outputs to bus drivers who’s outputs connect on a
common signal bus. The bus drivers ensure that the outputs from the tri-state buffers are
kept separate before combining onto the common bus line. This allows the output signals
from the tri-state buffers and the combined signal to be plotted separately. The resulting
waveforms clearly show the std_logic resolution function in operation, see Fig. 5.27 . Note

133

VHDL signal levels VCD
’0’ Forcing logic 0 ’0’
’1’ Forcing logic 1 ’1’
’X’ Forcing unknown ’X’
’Z’ High impedance ’Z’
’U’ Uninitialised ’X’
’W’ Weak unknown ’0’
’L’ Weak logic 0 ’0’
’H” Weak logic 1 ’1’
’-’ Don’t care ’X’

Table 5.7: IEEE multivalue logic and VCD representation.

the effect of the 7 ns delay on the plotted waveforms and the use of the VHDL generic
statement to set the invert device delay value.

−− Demonstration o f a s imple bus s t r u c t u r e us ing
−− the IEEE s t d l o g i c data type .
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity buf i s

generic (de lay : time := 0 ns) ;
port (in1 , c o n t r o l : in s t d l o g i c ;

out1 : out s t d l o g i c
) ;

end entity buf ;
architecture behav ioura l of buf i s
begin
p0 : process (in1 , c o n t r o l) i s

begin
i f (c o n t r o l = ’1 ’) then out1 <= in1 after delay ;
else out1 <= ’Z ’ ;

end i f ;
end process p0 ;

end architecture behav ioura l ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity i n v e r t i s

generic (de lay : time := 0 ns) ;
port (in1 : in s t d l o g i c ;

134

out1 : out s t d l o g i c
) ;

end entity i n v e r t ;
−−
architecture behav ioura l of i n v e r t i s
begin

out1 <= not in1 after delay ;
end architecture behav ioura l ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−

entity buf2 i s
port (in1 : in s t d l o g i c ;

out1 : out s t d l o g i c
) ;

end entity buf2 ;
−−
architecture dataf low of buf2 i s
begin

out1 <= in1 ;
end architecture dataf low ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
use work . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture s t r u c t u r a l of te s tbench i s
signal data in 1 , da ta in 2 : s t d l o g i c ;
signal data out 1 , data out 2 : s t d l o g i c ;
signal data cont ro l , c o n t r o l b u f 1 : s t d l o g i c ;
signal r e s u l t : s t d l o g i c ;
−−
begin
p0 : process i s

begin
data in 1 <= ’ 0 ’ ; wait for 5 ns ;
da ta in 1 <= ’ 1 ’ ; wait for 5 ns ;

end process p0 ;
−−

135

data in 2 <= not data in 1 ;
−−
p1 : process i s

begin
da ta co n t ro l <= ’ 1 ’ ; wait for 40 ns ;
da ta co n t ro l <= ’ 0 ’ ; wait for 40 ns ;

end process p1 ;
−−
c1g1 : entity buf port map(in1 => data in 1 , c o n t r o l => data cont ro l ,

out1 => data out 1) ;
c1g2 : entity i n v e r t generic map (de lay => 7 ns)

port map(in1 => data cont ro l , out1 => c o n t r o l b u f 1) ;
c1g3 : entity buf port map(in1 => data in 2 , c o n t r o l => cont ro l bu f1 ,

out1 => data out 2) ;
c1g4 : entity buf2 port map(in1 => data out 1 , out1 => r e s u l t) ;
c1g5 : entity buf2 port map(in1 => data out 2 , out1 => r e s u l t) ;
−−
end architecture s t r u c t u r a l ;

136

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0

clk.X

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

int1.R

0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
0
1
1

int2.R

99
79
79
59
59
39
39
19
19
1
1
21
21
41
41
61
61
81
99
79
79

r1.R

0.33
1.33
1.33
2.33
2.33
3.33
3.33
4.33
4.33
5.33
5.33
6.33
6.33
7.33
7.33
8.33
8.33
9.33
9.33
10.33
10.33

r2.R

99
79
79
59
59
39
39
19
19
1
1
21
21
41
41
61
61
81
81
101
101

r3.R

0
32.67
32.67
105.07
105.07
137.47
137.47
129.87
129.87
82.27
82.27
5.33
5.33
132.93
132.93
300.53
300.53
508.13
508.13
755.73
755.73

r4.R

0
299.909
299.909
59.394
59.394
25.3208
25.3208
11.7114
11.7114
4.38789
4.38789
0.187614
0.187614
3.31748
3.31748
5.59338
5.59338
7.32284
7.32284
8.68158
8.68158

bv1.X

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

stdl1.X

X X X X X X X X X
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 X
0 0 0 0 0 0 0 1 X
0 0 0 0 0 0 1 X Z
0 0 0 0 0 0 1 X Z
0 0 0 0 0 1 X Z X
0 0 0 0 0 1 X Z X
0 0 0 0 1 X Z X 0
0 0 0 0 1 X Z X 0
0 0 0 1 X Z X 0 0
0 0 0 1 X Z X 0 0
0 0 1 X Z X 0 0 1
0 0 1 X Z X 0 0 1
0 1 X Z X 0 0 1 X
0 1 X Z X 0 0 1 X
0 1 X Z X 0 0 1 X
0 1 X Z X 0 0 1 X

dtime

0
1e-8
2e-8
3e-8
4e-8
5e-8
6e-8
7e-8
8e-8
9e-8
1e-7
1.1e-7
1.2e-7
1.3e-7
1.4e-7
1.5e-7
1.6e-7
1.7e-7
1.8e-7
1.9e-7

clk.X

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

int1.R

0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
0
1

int2.R

99
79
79
59
59
39
39
19
19
-1
-1
-21
-21
-41
-41
-61
-61
-81
99
79

r1.R

0.33
1.33
1.33
2.33
2.33
3.33
3.33
4.33
4.33
5.33
5.33
6.33
6.33
7.33
7.33
8.33
8.33
9.33
9.33
10.3

r2.R

99
79
79
59
59
39
39
19
19
-1
-1
-21
-21
-41
-41
-61
-61
-81
-81
-101

r3.R

0
32.7
32.7
105
105
137
137
130
130
82.3
82.3
-5.33
-5.33
-133
-133
-301
-301
-508
-508
-756

r4.R

0
300
300
59.4
59.4
25.3
25.3
11.7
11.7
4.39
4.39
-0.188
-0.188
-3.32
-3.32
-5.59
-5.59
-7.32
-7.32
-8.68

bv1.X

000000000
000000000
000000000
000000001
000000001
000000011
000000011
000000111
000000111
000001111
000001111
000011111
000011111
000111111
000111111
001111111
001111111
111111111
111111111
111111111

stdl1.X

XXXXXXXXX
000000000
000000000
000000001
000000001
00000001X
00000001X
0000001XZ
0000001XZ
000001XZX
000001XZX
00001XZX0
00001XZX0
0001XZX00
0001XZX00
001XZX001
001XZX001
01XZX001X
01XZX001X
01XZX001X

Figure 5.26: Output results illustrating tabular representation of signals.

137

dtime

data_in_1.X
data_in_2.X
data_out_1.X
data_out_2.X
data_control.X
control_buf1.X
result.X

0 5n 7n 10n 15n 20n 25n 30n 35n 40n 45n 47n 50n 55n 60n 65n 70n 75n 80n

Z Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z Z Z Z

X X
Z Z

dtime

data_in_1.X
data_in_2.X
data_out_1.X
data_out_2.X
data_control.X
control_buf1.X
result.X

80n 85n 87n 90n 95n 100n 105n 110n 115n 120n 125n 127n 130n 135n 140n 145n 150n 155n

Z Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z Z

Z Z Z

Figure 5.27: Signal waveforms for the simple bus example.

5.10.7 Run debugging of VHDL simulation code.

The VHDL language has a number of built in features that allow the debugging of VHDL
code at simulation time. In this section the VHDL reserved words assert, report and
severity are introduced and their use as code debugging aids explained by way of a more
detailed design example. In the previous digital tutorial update a structural design of a
4 bit digital multiplier was introduced as an example that employed the Qucs schematic
capture digital simulation route. The next example extends the previous multiplier design
to 16 bits. However, at a structural level the larger multiplier becomes very detailed and
it’s design can be prone to error. To demonstrate the power of VHDL the 16 bit multiplier
has been redesigned at a functional level. A block diagram of the multiplier simulation test
bench is given in Fig. 5.28: firstly a clock strobes a data generator unit which generates a
sequence of integer numbers. These are converted to 16 bit_vectors and applied to the 16
bit multiplier unit as inputs x and y; secondly the 16-bit multiplier on sensing a change in
inputs x or y converts these signals from 16 bit_vectors to integers, multiples them and
finally converts the integer result to 32 bit_vector output Res_bit. Although standard
library STD defines arithmetic operations for integers it does not provide functions for
the conversion of integers to bit_vectors or the reverse operation. The following VHDL
listing gives the complete simulation test bench program for the 16 bit multiplier including
the required data conversion functions. VHDL debug or message reporting code using
the reserved words assert, report and severity have been added to the data_generator

138

and functional_multiplier architecture code. During simulation these text strings, and
the simulation time when they were actioned, are written to the Qucs log.txt file, giving
a trace record of the simulation activity. In cases where an error occurs at severity level
failure the simulation will terminate. FreeHDL allows VHDL report statements without an
accompanying assert statement.32 A typical Timing diagram plot for this design is shown
in Fig. 5.29

CLOCK

CLK

Data
generator

16 bit
functional
multiplier

X

Y
16

16

Res_bit

32

X => bit_vector(15 downto 0)

Y => bit_vector(15 downto 0)

Res_bit => bit_vector(31 downto 0)

Figure 5.28: Block diagram of a 16 bit functional multiplier.

−− 16 b i t d i g i t a l mu l t i p l i e r example .
−− Simulat ion t race us ing as se r t , r epor t and s e v e r i t y s ta tements .
−−
entity c l o ck i s

port (c l k : out b i t) ;
end entity c l o ck ;
−−
architecture behav ioura l of c l o ck i s
begin
p0 : process i s

begin
c l k <= ’0 ’ ; wait for 10 ns ;
c l k <= ’1 ’ ; wait for 10 ns ;

32One of the changes at the 1993 revision of the IEEE VHDL 1076-1987 standard was to allow report
statements without the previous mandatory assert clause. FreeHDL attempts to comply with the 1993
revision.

139

end process p0 ;
end architecture behav ioura l ;
−−
entity data genera to r i s

port (c l k : in b i t ;
x , y : out b i t v e c t o r (15 downto 0)

) ;
end entity data genera to r ;
−−
architecture behav ioura l of data genera to r i s
type mem array 16 i s array (1 to 8) of i n t e g e r ;
signal count : i n t e g e r := 0 ;
−−
function i n t e g e r t o v e c t o r 1 6 (in t no : i n t e g e r) return b i t v e c t o r i s
variable ni : i n t e g e r ;
variable r e tu rn va lue : b i t v e c t o r (15 downto 0) ;
begin

assert (n i < 0)
report ”Function i n t e g e r t o v e c t o r 3 2 : i n t e g e r number must be >= 0 ”
severity f a i l u r e ;

n i := int no ;
for i in r e turn va lue ’ Reverse Range loop

i f ((n i mod 2) =1) then r e tu rn va lue (i) := ’ 1 ’ ;
else r e tu rn va lue (i) := ’ 0 ’ ;
end i f ;
n i := ni /2 ;

end loop ;
return r e tu rn va lue ;

end i n t e g e r t o v e c t o r 1 6 ;
−−
begin
p1 : process (c l k) i s

variable x i : mem array 16 := (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8) ;
variable y i : mem array 16 := (2 , 4 , 6 , 8 , 10 , 12 , 14 , 1 6) ;
variable xh , yh : i n t e g e r ;
variable count i : i n t e g e r ;

begin

count i := count +1;
i f (count i > 8) then

count i := 1 ;
end i f ;

xh := x i (count i) ;
yh := y i (count i) ;
x <= i n t e g e r t o v e c t o r 1 6 (xh) ;

140

y <= i n t e g e r t o v e c t o r 1 6 (yh) ;
count <= count i ;
report ”In proce s s p1 . data genera to r . ” ;

end process p1 ;
end architecture behav ioura l ;
−−
−−
entity f u n c t i o n a l m u l t i p l i e r i s

port (x , y : in b i t v e c t o r (15 downto 0) ;
r e s b i t : out b i t v e c t o r (31 downto 0)

) ;
end entity f u n c t i o n a l m u l t i p l i e r ;
−−
−−
architecture behav ioura l of f u n c t i o n a l m u l t i p l i e r i s
−−
function v e c t o r t o i n t e g e r (v1 : b i t v e c t o r) return i n t e g e r i s
variable r e tu rn va lue : i n t e g e r :=0;
a l ias v2 : b i t v e c t o r (v1 ’ length−1 downto 0) i s v1 ;
begin

for i in v2 ’ high downto 1 loop
i f (v2 (i) = ’1 ’) then

r e tu rn va lue := (r e tu rn va lue +1)∗2;
else

r e tu rn va lue := re tu rn va lue ∗2 ;
end i f ;

end loop ;
i f v2 (0) = ’1 ’ then r e tu rn va lue := re tu rn va lue +1;
end i f ;

return r e tu rn va lue ;
end v e c t o r t o i n t e g e r ;
−−
function i n t e g e r t o v e c t o r 3 2 (in t no : i n t e g e r) return b i t v e c t o r i s
variable ni : i n t e g e r ;
variable value : b i t v e c t o r (31 downto 0) ;
begin

assert (n i < 0)
report ”Function i n t e g e r t o v e c t o r 3 2 : i n t e g e r number must be >= 0 ”
severity f a i l u r e ;

n i := int no ;
for i in 0 to 31 loop

i f ((n i mod 2) =1) then value (i) := ’ 1 ’ ;
else value (i) := ’ 0 ’ ;
end i f ;
i f ni > 0 then ni := ni /2 ;

141

else ni := (ni −1)/2;
end i f ;

end loop ;
return value ;

end i n t e g e r t o v e c t o r 3 2 ;
−−
begin
p0 : process (x , y) i s

variable xi , yi , prod mult : i n t e g e r ;
begin

x i := v e c t o r t o i n t e g e r (x) ;
y i := v e c t o r t o i n t e g e r (y) ;
prod mult := x i ∗ y i ;
r e s b i t <= i n t e g e r t o v e c t o r 3 2 (prod mult) ;

report ”In proce s s p1 . f u n c t i o n a l m u l t i p l i e r ” ;
end process p0 ;

end architecture behav ioura l ;
−−
entity t e s t 2 v h d l 1 i s
end entity t e s t 2 v h d l 1 ;
−−
architecture behav ioura l of t e s t 2 v h d l 1 i s
signal c l k : b i t ;
signal x , y : b i t v e c t o r (15 downto 0) ;
signal r e s b i t : b i t v e c t o r (31 downto 0) ;
−−
begin
d1 : entity work . c l o ck port map (c l k) ;
d2 : entity work . data genera to r port map(c lk , x , y) ;
d3 : entity work . f u n c t i o n a l m u l t i p l i e r port map (x , y , r e s b i t) ;

end architecture behav ioura l ;

142

dtime

clk.X
res_bit.X
x.X
y.X

10n 20n 30n

00000000000000000000000000001000 00000000000000000000000000010010
0000000000000010 0000000000000011
0000000000000100 0000000000000110

dtime

clk.X
res_bit.X
x.X
y.X

20n 30n 40n

00000000000000000000000000010010 00000000000000000000000000100000
0000000000000011 0000000000000100
0000000000000110 0000000000001000

dtime

clk.X
res_bit.X
x.X
y.X

40n 50n 60n

00000000000000000000000000110010 00000000000000000000000001001000
0000000000000101 0000000000000110
0000000000001010 0000000000001100

dtime

clk.X
res_bit.X
x.X
y.X

60n 70n 80n

00000000000000000000000001100010 00000000000000000000000010000000
0000000000000111 0000000000001000
0000000000001110 0000000000010000

Figure 5.29: Typical timing diagram for the 16 bit functional multiplier.

More advanced output debug messages, and results tables, can be written to Qucs message
file log.txt by using the predefined data handling routines in STD library package textio33.
This package contains functions for reading and writing STD data types from and to files34.
The next segment of VHDL code illustrates how a simple table of results can be written
to file log.txt. The results table is shown in Table 5.8.

−− Test t e x t i o package .
−−
l ibrary STD;
use STD. t e x t i o . a l l ;
−−
entity Qucs wr i t e t e s t i s
end entity Qucs wr i t e t e s t ;
−−

33The specification for the FreeHDL package textio can be found in text file freehdl-0.0.3/std/textio.vhdl.
34VHDL allows data to be read from and written to the standard input and output streams as well as user

defined files. At this time only writing data to file log.txt and reading data from user defined data files
has been tested. Please note that the use of the textio package is very much a cutting edge feature of
the Qucs/FreeHDL software and is probably not bug free.

143

architecture behav ioura l of Qucs wr i t e t e s t i s
begin
w r i t e t e s t : process i s

variable i n p u t l i n e , o u t p u t l i n e : l i n e ;
variable i n t1 : i n t e g e r := 10 ;

begin
wr i t e (output l ine , s t r i ng ’ (” ”)) ;
w r i t e l i n e (output , o u t p u t l i n e) ;
wr i t e (output l ine , s t r i ng ’ (”St r ing −> l og . txt ”)) ;
w r i t e l i n e (output , o u t p u t l i n e) ;

−−
t e s t L1 : for i c in 1 to 5 loop

i n t1 := in t1 + 1 ;
wr i t e (output l ine , s t r i ng ’ (” in t1 = ”)) ;
wr i t e (output l ine , i n t1) ;
wr i t e (output l ine , s t r i ng ’ (” in t1 ˆ2 = ”)) ;
wr i t e (output l ine , i n t1 ∗ i n t1) ;
w r i t e l i n e (output , o u t p u t l i n e) ;

end loop t e s t L1 ;
report ”Fin i shed t e s t f o r loop . ” ;

end process w r i t e t e s t ;
end architecture behav ioura l ;

144

Output:

Starting new simulation on Thu 24. Aug 2006 at 13:10:56

running C++ conversion... done.

compiling functions... done.

compiling main... done.

linking... done.

simulating...

Output to STD output -> log.txt

int1 = 11 int1^2 = 121

int1 = 12 int1^2 = 144

int1 = 13 int1^2 = 169

int1 = 14 int1^2 = 196

int1 = 15 int1^2 = 225

0 fs + 0d: NOTE: Finished test for loop.

running VCD conversion... done.

Simulation ended on Thu 24. Aug 2006 at 13:10:57

Ready.

Errors:

Table 5.8: Log.txt file showing tabular output results.

145

5.10.8 Testing digital systems using test vectors stored on disk.

In an attempt on my part to review all the new features introduced in the previous sections
of this update the final example demonstrates how test vectors stored on disk, as a text
file, can be read by the simulation program at the start of a simulation, then applied to the
inputs of the digital system under test. The code for this example is given in the following
listing:

−− Test ing d i g i t a l c i r c u i t s us ing t e s t v e c t o r s
−− s t o r ed as a t e x t f i l e on d i s k .
−−
entity comb1 i s

port (a , b , c , d : in b i t ;
y : out b i t

) ;
end entity comb1 ;
−−
architecture dataf low of comb1 i s
begin

y <= (a nand b) or (c and d) ;
end architecture dataf low ;
−−
l ibrary STD;
use STD. t e x t i o . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
signal c l o ck : b i t ;
signal v1 , v2 , v3 , v4 , y out : b i t ;
type a r r a y l i s t i s array (1 to 20) of b i t ;
signal v1sd , v2sd , v3sd , v4sd : a r r a y l i s t ;
−−
Procedure s t o r e d a t a (variable number : out i n t e g e r) i s
variable d1 , d2 , d3 , d4 : b i t ;
variable i n l i n e , o u t l i n e : l i n e ;
variable i : i n t e g e r ;
variable my str ing : s t r i n g (1 to 20) := cr & ”Constrained s t r i n g ” & cr ;
f i l e i n f i l e : t ex t open read mode i s ”/mnt/hda2/qucs −0.0 .10 f / t e s t 1 d a t a ” ;

begin
report my str ing ;
i := 1 ;
while not (e n d f i l e (i n f i l e)) loop

r e a d l i n e (i n f i l e , i n l i n e) ;
read (i n l i n e , d4) ;

146

read (i n l i n e , d3) ;
read (i n l i n e , d2) ;
read (i n l i n e , d1) ;
v1sd (i) <= d1 ;
v2sd (i) <= d2 ;
v3sd (i) <= d3 ;
v4sd (i) <= d4 ;
report ”In f i l e read loop . ” ;
i := i +1;
i f (i > 20) then exit ;
end i f ;
number:= i ;

end loop ;
end procedure s t o r e d a t a ;
−−
begin
p0 : process i s −− Generate a c l o c k s i g n a l .

begin
c l o ck <= ’ 1 ’ ; wait for 10 ns ;
c l o ck <= ’ 0 ’ ; wait for 10 ns ;

end process p0 ;
−−
g0 : entity work . comb1 port map (v1 , v2 , v3 , v4 , y out) ;
−−
p1 : process i s −− Read t e s t v e c t o r s from d i s k and
−− app ly data to c i r c u i t inpu t s .

variable no reads : i n t e g e r ;
variable i n l i n e , o u t l i n e : l i n e ;

begin
s t o r e d a t a (no reads) ;
wr i t e (o u t l i n e , s t r i ng ’ (”count = ”)) ;
wr i t e (o u t l i n e , no reads −1);
w r i t e l i n e (output , o u t l i n e) ;

−−
for k in 1 to no reads−1 loop −− Count up .

wait until (c lock ’ event and c l o ck = ’1 ’) ;
v1 <= v1sd (k) ;
v2 <= v2sd (k) ;
v3 <= v3sd (k) ;
v4 <= v4sd (k) ;
wr i t e (o u t l i n e , s t r i ng ’ (”Time = ”) , l e f t , 8) ;
wr i t e (o u t l i n e , now , r i ght , 1 0) ;
wr i t e (o u t l i n e , s t r i ng ’ (” Test v e c t o r s −> ”) , r i ght , 20) ;
wr i t e (o u t l i n e , v4 , l e f t , 2) ;
wr i t e (o u t l i n e , v3 , l e f t , 2) ;

147

wr i t e (o u t l i n e , v2 , l e f t , 2) ;
wr i t e (o u t l i n e , v1 , l e f t , 2) ;
wr i t e (o u t l i n e , s t r i ng ’ (”k = ”) , r i ght , 10) ;
wr i t e (o u t l i n e , k) ;
w r i t e l i n e (output , o u t l i n e) ;
wait until (c lock ’ event and c l o ck = ’0 ’) ;

end loop ;
−−

for k in no reads−1 downto 1 loop −− Count down .
wait until (c lock ’ event and c l o ck = ’1 ’) ;
v1 <= v1sd (k) ;
v2 <= v2sd (k) ;
v3 <= v3sd (k) ;
v4 <= v4sd (k) ;
wr i t e (o u t l i n e , s t r i ng ’ (”Time = ”) , l e f t , 8) ;
wr i t e (o u t l i n e , now , r i ght , 1 0) ;
wr i t e (o u t l i n e , s t r i ng ’ (” Test v e c t o r s −> ”) , r i ght , 20) ;
wr i t e (o u t l i n e , v4 , l e f t , 2) ;
wr i t e (o u t l i n e , v3 , l e f t , 2) ;
wr i t e (o u t l i n e , v2 , l e f t , 2) ;
wr i t e (o u t l i n e , v1 , l e f t , 2) ;
wr i t e (o u t l i n e , s t r i ng ’ (”k = ”) , r i ght , 10) ;
wr i t e (o u t l i n e , k) ;
w r i t e l i n e (output , o u t l i n e) ;
wait until (c lock ’ event and c l o ck = ’0 ’) ;

end loop ;
wait ;

end process p1 ;
end architecture behav ioura l ;

Although the listing above is relatively short, careful study of it’s contents should allow
readers to identify many of the new Qucs/FreeHDL features introduced earlier. Moreover
in some sections, the code illustrates extra features which will be familiar to those Quc-
s/FreeHDL users who have a more advanced knowledge of the VHDL language. These are
listed below with a number of general points:

• The VHDL code simulates the performance of a simple combinational logic circuit
called comb1: this has four inputs (a, b, c, d) of type bit and one output (y) of type
bit35.

• The testbench being simulated consists of two processes: process p0 generates a clock
signal with a period of 20 ns; process p1 inputs test data held in file test1_data 36

and stores it in four signal arrays (v1sd, v2sd, v3sd and v4sd), applying this data

35Type bit was chosen for this example rather than one of the IEEE signal types because package textio
does not handle the IEEE multivalue logic types.

36I use the Knoppix version of the Linux/GNU operating system for all work on the Qucs project. The

148

to the inputs of the circuit under test at the leading edges of the clock pulse. Note
process p1 only executes once due to the wait statement at its end.

• An instantiation of the comb1 component is included in the testbench architecture.
Note the use of the VHDL entity work.comb1 construction, this is an alternative for
use work.all ;

• The test vector data held in file test_data is read by procedure store_data which
returns the number of lines of data read in variable number. File handling, including
reading data from disk, is undertaken with predefined routines in package textio.

• The first report statement in procedure store_data writes string my_string to file
log.txt. My_string is an example of the VHDL constrained string type, consisting of
non-printable control characters37 concatenated with printable characters.

• Two loops are employed in process p1 to apply signal test vectors to the input of
comb1: the first loop counts up from one and the second loop counts down from the
number of lines of test vectors read by procedure store_data, effectively generating
test vectors in a way similar to using an up-down pattern generator counter. Note
that the signal data is applied to the circuit under test on the rising edge of the clock
signal and that the applied signal vector sequence is really up to the imagination of
the VHDL programmer.

• The write statements in the process p1 for loops demonstrate the formatted version
of the textio write statement. This greatly assists in setting up tables of results.
Table 5.9 gives a typical log.txt content for the comb1 test simulation.

• In process p1 signals v1, v2, v3 and v4 are assigned an indexed value from (type
array_list) v1sd, v2sd, v3sd and v4sd signals. During simulation Qucs/FreeHDL
stores signal values as a simulation progresses. Hence, it is theoretically possible to
display both the standard and composite signal types. A typical waveform plot for
signals v1, v2, v3, v4 and y_out is given in Fig. 5.30. Fig. 5.31 illustrates a waveform
plot of the composite signals v1sd, v2sd, v3sd and v4sd. In Fig. 5.31 each group
is plotted at a clock edge change yielding identical groups of values; each vertical
set of bits represents the bit values for a single line in file test1_data. Compare
the displayed values in Fig. 5.31 with the contents of the test1_data file shown
in Fig. 5.32. As mentioned before some care is needed when plotting, or tabulating,
composite signals, particularly when the array sizes are large; array dimensions above
roughly 50 become difficult to plot on a normal resolution screen. In such cases it is
better to slice part of an array and assign the required values to a signal that can be
easily displayed.

absolute location of the test data file will depend on where Qucs and FreeHDL have been installed and
the location where work files are kept.

37Type character in package standard lists the two letter codes used by VHDL to represent non-printable
control characters.

149

Output :
−−−−−−−−−−
Sta r t i ng new s imu la t i on on Fr i 25 . Aug 2006 at 14 : 35 : 48
running C++ conver s i on . . . done .
compi l ing f u n c t i o n s . . . done .
compi l ing main . . . done .
l i n k i n g . . . done .
s imu la t ing . . .
0 f s + 0d : NOTE:
Constrained s t r i n g
0 f s + 0d : NOTE: In f i l e read loop .
.
0 f s + 0d : NOTE: In f i l e read loop .
count = 16
Time = 0 ns Test v e c to r s −> 0 0 0 0 k = 1
Time = 20 ns Test v e c to r s −> 0 0 0 0 k = 2
Time = 40 ns Test v e c to r s −> 0 0 0 1 k = 3
Time = 60 ns Test v e c to r s −> 0 0 1 0 k = 4
.
Time = 200 ns Test v e c to r s −> 1 0 0 1 k = 11
Time = 220 ns Test v e c to r s −> 1 0 1 0 k = 12
Time = 240 ns Test v e c to r s −> 1 0 1 1 k = 13
Time = 260 ns Test v e c to r s −> 1 1 0 0 k = 14
Time = 280 ns Test v e c to r s −> 1 1 0 1 k = 15
Time = 300 ns Test v e c to r s −> 1 1 1 0 k = 16
Time = 320 ns Test v e c to r s −> 1 1 1 1 k = 16
Time = 340 ns Test v e c to r s −> 1 1 1 1 k = 15
Time = 360 ns Test v e c to r s −> 1 1 1 0 k = 14
Time = 380 ns Test v e c to r s −> 1 1 0 1 k = 13
Time = 400 ns Test v e c to r s −> 1 1 0 0 k = 12
.
Time = 560 ns Test v e c to r s −> 0 1 0 0 k = 4
Time = 580 ns Test v e c to r s −> 0 0 1 1 k = 3
running VCD conver s i on . . . done .
Simulat ion ended on Fr i 25 . Aug 2006 at 14 : 35 : 50
Ready .
Errors :

Table 5.9: An edited version of the formatted tabular output results written to file log.txt.

150

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

180n 190n 200n 210n 220n 230n 240n 250n 260n 270n 280n 290n 300n 310n 320n 330n 340n 350n 360n

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n 120n 130n 140n 150n 160n 170n 180n

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

220n 230n 240n 250n 260n 270n 280n 290n 300n 310n 320n 330n 340n 350n 360n 370n 380n 390n 400n

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

400n 410n 420n 430n 440n 450n 460n 470n 480n 490n 500n 510n 520n 530n 540n 550n 560n 570n 580n

Figure 5.30: Typical timing diagram for comb1 simulation.

dtime

v1sd.X
v2sd.X
v3sd.X
v4sd.X

40n 50n 60n 70n 80n

01010101010101010000 01010101010101010000 01010101010101010000 01010101010101010000
00110011001100110000 00110011001100110000 00110011001100110000 00110011001100110000
00001111000011110000 00001111000011110000 00001111000011110000 00001111000011110000
00000000111111110000 00000000111111110000 00000000111111110000 00000000111111110000

Figure 5.31: Typical timing diagram for composite signals v1sd, v2sd, v3sd and v4sd.

151

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Figure 5.32: Comb1 simulation test vectors.

5.11 End note

Qucs 0.0.8 added digital simulation to the impressive list of features already available in the
Qucs package. The 0.0.8 release represented a significant step forward in the development of
the Qucs project. The fact that there were bugs in the first version of the digital simulator
was not surprising given the complexity of the software. Release 0.0.9 goes a long way to
correcting the most annoying of these bugs. It also adds a number of new features, the most
notable being the new VHDL editor and the automatic generation of component symbols
from hand crafted VHDL model code. Qucs 0.0.10 and FreeHDL 0.0.3 adds a range of new
features to the software, particularly important are the use of the IEEE std_logic_1164
package and the file handling routines found in the textio package. My thanks to Michael
Margraf and Stefan Jahn for all their encouragement during the period that I have been
testing the Qucs VHDL digital simulation and the subsequent writing of these notes.

152

6 Transient Domain Flip-Flop Models
for Mixed-Mode Simulation

6.1 Introduction

One of the primary aims of the Qucs project is the development of a universal circuit simu-
lator that allows circuit performance to be investigated from DC to microwave frequencies.
Adding performance analysis in the digital domain makes Qucs a truly universal simula-
tor. Qucs 0.0.8 was the first release to include digital simulation. Qucs digital simulation
centres around VHDL using the FreeHDL VHDL compiler to generate a machine code si-
mulation of a circuit under test. Release 0.0.8 includes built-in models for the basic digital
gates and a number of the common sequential flip-flops. The Qucs gate models can be
used in both digital and transient simulation. Unfortunately, the flip-flop models are only
available in digital simulation. The current version of Qucs models flip-flops using VHDL
and does not provide time domain models for transient simulation. This is an important
omission which limits the Qucs simulator mixed-mode simulation capabilities. Mixed-mode
simulation is a term commonly employed to describe the simulation of circuits that con-
tain both analogue and digital components. In the real world circuits are, of course, not
subdivided into neat boxes labelled analogue, S-parameter, digital or any other physical
domain. So it is of some importance that Qucs device modelling be developed to allow
circuits consisting of a range of different analogue and digital components, to be simulated
at the same time. Normally such systems are simulated in the time domain using large
signal transient simulation. Performance data being both analogue and digital expressed
in tabular or graphical form. This tutorial note presents a number of transient simulation
models for flip-flops based on structural digital circuits, describes their use, and outlines a
number of example simulations derived from practical circuits.

6.2 Latches and flip-flops

Sequential digital devices generically known as flip-flops (SR, D, JK and T types) are
commonly classified into three major groups.

• Latches: basic or gated

• Pulse triggered flip-flops: master slave devices with or without data-lockout

• Edge-triggered flip-flops: leading or trailing edge triggered.

153

As the speed of electronic systems has increased so has the popularity of the single edge-
triggered flip-flops over the slower master slave devices. Today most IC designs are based
on D type edge-triggered devices rather than the earlier JK master slave devices. Our
concern here is the development of a consistant set of models that allow the common flip-
flops to be modelled accurately, and reliably, in the transient time domain. In order to
keep these models simple the D gated and edge-triggered devices have been chosen as the
fundamental building blocks for the transient domain Qucs models. Using basic Boolean
logic concepts it is straightforward to show that JK and T edge-triggered flip-flop models
can be derived from the D flip-flop models.

6.3 The gated D latch

The circuit diagram for a gated D latch constructed from two input nand gates is shown
in Fig. 6.11. Outputs Q and not Q (QB in Fig. 6.1) are derived from the two cross
coupled nand gates connected as a basic SR nand latch. Fig. 6.2 shows the performance
characteristics for this circuit. These were obtained using the simple test configuration
shown in Fig. 6.3. Logic one digital signals are represented by 1V and logic 0 signals by 0V
in the transient analysis domain. Propagation delays through the various circuit gates can
be set by changing the delay time for each gate. Cross coupled gates are often a cause of
simulation failure due to the fact that DC analysis fails to converge to a stable solution at
the start of a transient simulation. One approach that helps to force a stable DC solution
is to set Q and QB to known values, say logic 0 and logic 1, at the start of a simulation.
In circuits like the basic gated D latch shown in Fig. 6.1, where asynchronous set and reset
inputs are not included, this is not possible. However, flip-flops with asynchronous set and
reset inputs do allow the state of a flip-flop to be determined at a given time in a simulation.
In the examples that follow, whenever possible, the state of the latch or flip-flop devices
is set at the start of a simulation. In the majority of the example circuits, device delays
have also been set to zero. It therefore follows that most waveform plots show functional
data rather than accurate timing characteristics. In many mixed-mode simulations the
digital elements present in a design are often modelled as functional devices whose primary
task is to generate the signals needed for the overall circuit to function. A more detailed
discussion of the effects on transient simulation caused by including device timing delays
is presented in a later section of these notes.

1Richard S. Sandige, Modern Digital Design, 1990, McGraw-Hill International Editions.

154

&

Y3

&

Y4

D
times=20ns; 20ns

C
times=5ns; 5ns

&

Y2

&

Y1

&

Y5

transient
simulation

TR1
Type=lin
Start=0
Stop=100 ns

C

QB

Q

D

Figure 6.1: Gated D latch with digital signal generators D and C

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7

0

1

time

D
.V

t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7

0

1

time

C
.V

t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7

0

1

time

Q
.V

t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7

0

1

time

Q
B

.V
t

Figure 6.2: Gated D latch simulation waveforms

155

D Q

C Q

SUB1
File=gated_d_latch.sch

D

C
Num=2

transient
simulation

TR1
Type=lin
Start=0
Stop=200 ns

D

C

Q

QB

Figure 6.3: Gated D latch test circuit

156

6.4 Edge-triggered D type flip-flop

The schematic for a positive edge-triggered D flip-flop is shown in Fig. 6.42. Asynchronous
set (SET) and reset (RESET) control inputs allow the flip-flop outputs Q and not Q (QB
in Fig. 6.4) to be set to known values at the start of a simulation. The nand gates forming
each of the cross coupled SR latches have their delay times set at 0 ns. The edge-triggered
D device is a building block for both the JK and T types of flip-flop. A typical set of
transient simulation test results for the D flip-flop model are illustrated in Fig. 6.5. These
where obtained using the basic test configuration shown in Fig. 6.6.

CLOCK
Num=1

QB

Q

&

Y2

&

Y8

&

Y9

&

Y11

&

Y10

SET

DIN
Num=2

RESET

&

Y7

I2

CLOCK

SET

I3

DIN

I1

I0

QB

QRESET

Figure 6.4: Positive edge-triggered D flip-flop circuit

2David A. Hodges and Horace G. Jackson, Analysis and Design of Digital Integrated Circuits, 1998,
Second edition, McGraw-Hill Book Company.

157

0 5e-8 1e-7 1.5e-7 2e-7 2.5e-7 3e-7 3.5e-7 4e-7 4.5e-7 5e-7
0

1

time

R
.V

t

0 5e-8 1e-7 1.5e-7 2e-7 2.5e-7 3e-7 3.5e-7 4e-7 4.5e-7 5e-7
0

1

time

D
IN

.V
t

0 5e-8 1e-7 1.5e-7 2e-7 2.5e-7 3e-7 3.5e-7 4e-7 4.5e-7 5e-7
0

1

time

C
LO

C
K

.V
t

0 5e-8 1e-7 1.5e-7 2e-7 2.5e-7 3e-7 3.5e-7 4e-7 4.5e-7 5e-7

0

1

time

Q
.V

t

0 5e-8 1e-7 1.5e-7 2e-7 2.5e-7 3e-7 3.5e-7 4e-7 4.5e-7 5e-7

0

1

time

Q
B

.V
t

Figure 6.5: Transient waveforms for the circuit shown in Fig. 6.6

1
SUB2

Q
S

D

R
Q

SUB1

transient
simulation

TR1
Type=lin
Start=0
Stop=500 ns

S2
times=5ns; 5ns

S3
times=20ns; 1000ns

S4
times=40ns; 40ns

CLOCK

R

DIN
Q

QB

Figure 6.6: D flip-flop test circuit

158

6.5 The edge-triggered JK flip-flop

A leading edge-triggered JK flip-flop can be constructed using a positive edge-triggered
D flip-flop and external logic3. The external logic generates the required JK flip-flop
characteristic equation given by

Q+ = J.Q+K.Q

Were Q, Q, J and K are the current state values of the device signals and Q+ is the next
state value of Q following the rising edge of the device clock pulse. The schematic diagram
for the edge triggered flip flop is shown in Fig. 6.7 and a typical set of test waveforms in
Fig. 6.8. These were obtained using the test circuit shown in Fig. 6.9.

1

Y4

&

Y3

1

Y2

&

Y1J

CLOCK

QB

Q

K

SET

RESET

Q
S

D

R
Q

SUB1
File=dff_sr.sch

Figure 6.7: Positive edge-triggered JK flip-flop circuit

3M. Morris Mano and Charles R Kime, Logic and Computer Design Fundamentals, 2004, Third edition,
Pearson Education International, Prentice Hall

159

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7

0

1

time

R
E

S
E

T.
V

t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7

0

1

time

C
LO

C
K

.V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7

0

1

time

Q
.V

t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7

0

1

time

Q
B

.V
t

Figure 6.8: Transient waveforms for the circuit shown in Fig. 6.9

160

1
SUB2

CLOCK
Num=1

J Q

K

S

R
Q

SUB1

RESET

transient
simulation

TR1
Type=lin
Start=0
Stop=100 ns

CLOCK

RESET

Q

QB

Figure 6.9: JK flip-flop test circuit showing JK operating in toggle mode

161

6.6 The edge-triggered T flip-flop

The characteristic equation for a leading edge-triggered flip-flop is4

Q+ = T ⊕Q
where the symbols have the same meaning as the JK flip-flop. The circuit diagram, test
waveforms and test circuit for the edge-triggered flip-flop are given in Figures 6.10 to 6.12.

=1

Y1

Q
S

D

R
Q

SUB1
File=dff_sr.sch

SET

TFF

CLOCK

R

Q

QB

SET

TFF

CLOCK

R

Q

QB

Figure 6.10: Positive edge-triggered T flip-flop circuit

4See footnote 2.

162

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7
0

1

time

S
E

T.
V

t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7
0

1

time

C
LO

C
K

.V
t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7
0

1

time

T
F

F
.V

t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7

0

1

time

Q
B

.V
t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7

0

1

time

Q
.V

t

Figure 6.11: Transient waveforms for the circuit shown in Fig. 6.12

1
SUB2
File=Logic_one.sch

CLOCK
times=5 ns; 5 ns

SET
times=10 ns; 1000 ns

T1
times=30 ns; 60 ns

Q

R

Q

S
T

SUB1
File=tff.sch

transient
simulation

TR1
Type=lin
Start=0
Stop=200ns
IntegrationMethod=Trapezoidal
Order=2

TFF

SET

CLOCK

Q

QB

Figure 6.12: T flip-flop test circuit

163

6.7 Two example digital circuits

• A synchronous BCD up-counter: Figure 6.13 shows a synchronous BCD up-
counter constructed from four edge-triggered JK flip flops connected as toggle flip-
flops. The input signal waveforms and the corresponding counter outputs Q0, Q1,
Q2 and Q3 are illustrated in Fig. 6.14. These simulation results were obtained using
the default trapezoidal integration method with order 2.

1

SUB5
File=Logic_one.sch &

Y1

&

Y2

&

Y3

J Q

K

S

R
Q

SUB2
File=jkff.sch

J Q

K

S

R
Q

SUB3
File=jkff.sch

J Q

K

S

R
Q

SUB1
File=jkff.sch

transient
simulation

TR1
Type=lin
Start=0
Stop=120ns
IntegrationMethod=Trapezoidal
Order=2

&

Y4

1

Y5
CLEAR
Num=3
times=10 ns; 1000ns

COUNT
times=5 ns; 1000ns

CLOCK
times=5 ns; 5ns

J Q

K

S

R
Q

SUB4
File=jkff.sch

CLOCK

Q0 Q1 Q2

CLEAR

COUNT

Q3

Figure 6.13: Synchronous BCD up-counter circuit

At the start of simulation signal CLEAR is set to logic 1 which in turn causes the
counter to be reset to 0000. Similarly signal COUNT has to be set to 1 for counting
to take place. Notice that the counter counts from 0 to 9 and then resets to 0.

• A simple state machine: Figure 6.15 shows a simple sequential state machine with
input X and outputs Y1 and Y2. The outputs are synchronised to the input clock.
The state equations for this example are

J = X, K = 1, Y 1 = Q0.X, Y 2 = Q0

164

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7
0

1

time

C
LE

A
R

.V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7
0

1

time

C
LO

C
K

.V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7
0

1

time

C
O

U
N

T.
V

t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

1

time

Q
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

1

time

Q
1.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

1

time

Q
2.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

1

time

Q
3.

V
t

Figure 6.14: Transient waveforms for the circuit shown in Fig. 6.13

165

&

Y1

1

Y2

1
SUB4
File=Logic_one.sch

J Q

K

S

R
Q

SUB1
File=jkff.sch

RESET
times=15ns; 1000ns

Q
S

D

R
Q

SUB3
File=dff_sr.sch

Q
S

D

R
Q

SUB2
File=dff_sr.sch

X
times=100ns; 20ns

CLOCK
times=5ns; 5ns

transient
simulation

TR1
Type=lin
Start=0
Stop=350 ns
IntegrationMethod=Trapezoidal
Order=2

digital
simulation

Digi1
Type=TimeList
time=350 ns

X

RESET

Y1

Y2

CLOCK

Figure 6.15: A simple state machine

166

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7 2.2e-7 2.4e-7 2.6e-7 2.8e-7 3e-7 3.2e-7 3.4e-7
0

1

time

C
LO

C
K

.V
t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7 2.2e-7 2.4e-7 2.6e-7 2.8e-7 3e-7 3.2e-7 3.4e-7
0

1

time

R
E

S
E

T.
V

t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7 2.2e-7 2.4e-7 2.6e-7 2.8e-7 3e-7 3.2e-7 3.4e-7
0

1

time

X
.V

t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7 2.2e-7 2.4e-7 2.6e-7 2.8e-7 3e-7 3.2e-7 3.4e-7

0

1

time

Y
1.

V
t

0 2e-8 4e-8 6e-8 8e-8 1e-7 1.2e-7 1.4e-7 1.6e-7 1.8e-7 2e-7 2.2e-7 2.4e-7 2.6e-7 2.8e-7 3e-7 3.2e-7 3.4e-7

0

1

time

Y
2.

V
t

Figure 6.16: Transient waveforms for the circuit shown in Fig. 6.15

167

6.8 VHDL code for the transient domain flip-flop models

Although the primary purpose for developing the transient domain flip-flop models is the
simulation of mixed-mode circuits, it is worth noting that because the models have been
constructed from Qucs gate primitives using a bottom-up design approach, Qucs can also
use the models for digital simulation. Moreover, provided the circuit being simulated does
not contain any purely analogue components Qucs will generate a VHDL model testbench
that describes the function and test sequence for the circuit being simulated. Shown in
Fig. 6.17 is a digital timelist waveform plot for the synchronous BCD up-counter introduced
in the previous section of these notes. Listing 6.1 lists the VHDL code generated by Qucs
for the synchronous BCD up-counter example.

dtime

clear.X
count.X
clock.X
q0.X
q1.X
q2.X
q3.X

0 5n 10n 15n 20n 25n 30n 35n 40n 45n 50n 55n 60n 65n 70n 75n 80n 85n 90n 95n

Figure 6.17: Digital TimeList waveforms for the circuit shown in Fig. 6.13

Listing 6.1: VHDL testbench code for the circuit shown in Fig. 6.13

−− Qucs 0 . 0 . 9
−− /mnt/hda2/ D i g i t a l S u b c i r c u i t s p r j /Sync BCD counter . sch

entity Sub Logic one i s
port (nnout L1 : out b i t) ;

end entity ;
use work . a l l ;
architecture Arch Sub Logic one of Sub Logic one i s

signal gnd ,
L1 : b i t ;

begin
gnd <= ’ 0 ’ ;
L1 <= not gnd ;
nnout L1 <= L1 or ’ 0 ’ ;

end architecture ;

168

entity S u b d f f s r i s
port (CLOCK: in b i t ;

DIN : in b i t ;
nnout Q : out b i t ;
nnout QB : out b i t ;
RESET: in b i t ;
SET: in b i t) ;

end entity ;
use work . a l l ;
architecture Arch Sub df f s r of S u b d f f s r i s

signal I0 ,
I2 ,
I1 ,
I3 ,
QB,
Q : b i t ;

begin
nnout QB <= QB or ’ 0 ’ ;
nnout Q <= Q or ’ 0 ’ ;
I1 <= not (CLOCK and RESET and I0) ;
I3 <= not (DIN and I2 and RESET) ;
QB <= not (RESET and I2 and Q) ;
Q <= not (I1 and QB and SET) ;
I0 <= not (I3 and I1 and SET) ;
I2 <= not (CLOCK and I3 and I1) ;

end architecture ;

entity S u b j k f f i s
port (nnnet6 : in b i t ;

nnnet1 : in b i t ;
nnnet8 : in b i t ;
nnout nnnet3 : out b i t ;
nnout nnnet7 : out b i t ;
nnnet9 : in b i t ;
nnnet10 : in b i t) ;

end entity ;
use work . a l l ;
architecture Arch Sub jk f f of S u b j k f f i s

signal nnnet0 ,
nnnet2 ,
nnnet4 ,
nnnet5 ,

169

nnnet7 ,
nnnet3 : b i t ;

begin
nnnet0 <= not nnnet1 ;
nnnet2 <= nnnet3 and nnnet0 ;
nnnet4 <= nnnet2 or nnnet5 ;
nnnet5 <= nnnet6 and nnnet7 ;
nnout nnnet7 <= nnnet7 or ’ 0 ’ ;
nnout nnnet3 <= nnnet3 or ’ 0 ’ ;
SUB1 : entity S u b d f f s r port map (nnnet8 , nnnet4 , nnnet3 ,

nnnet7 , nnnet10 , nnnet9) ;
end architecture ;

entity TestBench i s
end entity ;
use work . a l l ;

architecture Arch TestBench of TestBench i s
signal CLEAR,

COUNT,
CLOCK,
Q3,
Q0,
Q1,
Q2,
nnnet0 ,
nnnet1 ,
nnnet2 ,
nnnet3 ,
nnnet4 ,
nnnet5 ,
nnnet6 ,
nnnet7 ,
nnnet8 ,
nnnet9 : b i t ;

begin
SUB5 : entity Sub Logic one port map (nnnet0) ;
nnnet1 <= Q0 and nnnet2 ;
nnnet3 <= Q1 and nnnet1 ;
nnnet4 <= Q2 and nnnet3 ;
SUB2 : entity S u b j k f f port map (nnnet1 , nnnet1 , nnnet5 ,

Q1 , nnnet6 , nnnet0 , nnnet7) ;

170

SUB3 : entity S u b j k f f port map (nnnet3 , nnnet3 , nnnet5 ,
Q2 , nnnet8 , nnnet0 , nnnet7) ;

SUB1 : entity S u b j k f f port map (nnnet0 , nnnet0 , nnnet5 ,
Q0 , nnnet9 , nnnet0 , nnnet7) ;

nnnet5 <= COUNT and CLOCK;
nnnet7 <= not CLEAR;

CLEAR: process
begin

CLEAR <= ’ 1 ’ ; wait for 10 ns ;
CLEAR <= ’ 0 ’ ; wait for 1000 ns ;

end process ;

COUNT: process
begin

COUNT <= ’ 0 ’ ; wait for 5 ns ;
COUNT <= ’ 1 ’ ; wait for 1000 ns ;

end process ;

CLOCK: process
begin

CLOCK <= ’ 0 ’ ; wait for 5 ns ;
CLOCK <= ’ 1 ’ ; wait for 5 ns ;

end process ;

SUB4 : entity S u b j k f f port map (nnnet4 , Q0 , nnnet5 ,
Q3 , nnnet2 , nnnet0 , nnnet7) ;

end architecture ;

6.9 Generating a library of mixed-mode digital
components

The Qucs project facilities offer users a simple and convenient approach to developing
libraries of components that are linked by a common theme; in these notes this is digital
component models for transient simulation. To form a library create a new folder, at a
point on a disk file system that users have read/write access, giving it a suitable name, for
example

f l i p f l o p models tran sim pr j .

171

Next move into the new library folder a copy of each of the schematic capture files for the
flip-flop models introduced in these notes. These are:

d f f s r . sch , j k f f . sch , t f f . sch , and gated d l a t ch . sch .

A copy of the schematic for setting nodes to logic one is also required

(l o g i c one . sch) .

These models are then freely available for use in any projects which users are working on.
They can be copied into such projects using the ”Add files to Project...”menu button found
under the Qucs Project drop-down menu. Similarly any new models developed as part of
a project can be added to the library and used again in the future.

6.10 Digital component propagation time delays and
transient simulation numerical stability

Transient simulation is in general much slower than digital simulation using VHDL gen-
erated machine code. The large signal transient simulation models of flip-flops and other
sequential digital devices are intended for use in mixed-mode circuit simulation rather than
being used for pure digital circuit simulation. An interesting, and indeed very important
question, relates to the efficiency, and accuracy, of the numerical analysis algorithms em-
ployed in the integration routines that are central to transient circuit simulation. Qucs
allows users to select the algorithm they wish to employ for transient simulation. The
available algorithms are Trapezoidal, Euler, Gear and Adams Moulton; in each case the
algorithm order can be set from 1 to 6. The second order Trapezoidal integration algorithm
is used by Qucs as the default for transient simulation. To test which of these algorithms
offers the most time efficient solution to the transient simulation of digital circuits, that
include flip-flops, the BCD counter shown in Fig. 6.13 was used as a test case and repeat-
edly simulated using different integration routines and algorithm orders. The test results
are shown in Table 6.1. Very little difference was found between circuits where the cross
coupled gates both had zero propagation delays and the case where one gate had 0.5ns
delay and the other zero delay.

One obvious fact emerges from the data given in Table 6.1; namely that the Adams Moulton

Order Trapezoidal Euler Gear Adams Moulton
1 1 1.62 1.65 1.62
2 1 1.62 0.44 1
4 1 1.62 1.28 0.39
6 1 1.62 0.28 0.18

Table 6.1: Relative simulation times for the circuit shown in Fig. 6.13

172

Order Number or rejections Average time step
1 1470 5.17737e-12
2 1750 9.4585e-12
4 1454 2.866e-11
6 61 5.76646e-11

Table 6.2: Number of rejections and average time step data for the Adams Moulton algo-
rithm

higher order integration routines appear to be faster than the default trapezoidal algorithm.
This is corroborated by the average time step and number of rejection data points output
by Qucs at the end of a simulation. Table 6.2 lists this data for the Adams Moulton
algorithm tabulated in Table 6.1.

Table 6.2 points to the increase in average time step and the dramatic reduction in the
number of simulation solution rejections as the probable reason for the reduction in tran-
sient simulation time when using the higher order Adams Moulton integration routines.
However, other factors may influence the choice of integration routine. Often speed is not
the only criteria that is of importance when simulating large complex circuits. Consider
the following case (the circuit shown in Fig. 6.13 with order 6 Adams Moulton transient
analysis integration); setting one of the gate delays to 1ns, and the other to 0ns, in each of
the RS latches in the edge-triggered D flip-flop yields the signal waveforms illustrated in
Fig. 6.18. Clearly here the solution is incorrect pointing to probable numerical instability
caused by the choice of integration routine.

173

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7
0

1

time

C
LE

A
R

.V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7
0

1

time

C
LO

C
K

.V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

1

time

Q
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7
0

1

time

C
O

U
N

T.
V

t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

1

time

Q
1.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

1

time

Q
2.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

1

time

Q
3.

V
t

Figure 6.18: Digital TimeList waveforms for the circuit shown in Fig. 6.13

6.11 Mixed-mode example simulations

Mixed-mode simulation involves the simulation of circuits that contain electronic devices
and circuits from different physical domains; the most obvious being circuits with a mixture
of analogue and digital components. Qucs has developed to a point where it can handle this
type of circuit given device models that can span across the different physical domains. In
the future such circuits are likely to incorporate components from other domains, including
for example, digital signal processing components (DSP) and possibly nano mechanical
devices. Multi-domain simulation adds additional complexity to the simulation process
not normally found in single domain simulation. Each domain usually represents signal
data in a specific way attributed to a given domain; voltage and current for analogue
quantities, boolean ’1’ and ’0’ for digital signals and floating point numbers for DSP.
Hence, signals passing from one domain to another have to be converted from one format
to another. These conversion elements are often called node-bridges and form an essential
part of the mixed-mode simulation process. The three examples that are introduced in this
section of these notes have been chosen to illustrate a number of the basic ideas concerned
with mixed-mode simulation of circuits containing analogue and digital components, and
to show how Qucs deals with this type of simulation. In the last section the importance
of correct selection of integration routine when simulating circuits in the time domain was
stressed. Mixed-mode circuits often include a wide diversity of components that exhibit
widely differing time constants. This makes the problem of numerical stability versus
simulation run time even more critical. With the explicit numerical integration routines,

174

like the trapezoidal routine, numerical instability results if the simulation time step becomes
much larger than the smallest time constant in a circuit. Hence, to achieve successful
completion of a simulation the integration time step must be reduced which in turn makes
the overall simulation time increase significantly. The implicit Gear algorithm5 does not
suffer from this problem and is the natural choice for circuits with components that have
widely differing time constants.

• Example 1: Analogue waveform driven digital devices with output node-bridge.

The circuit in Fig. 6.19 shows an analogue voltage source driving a digital inverter
with a node-bridge element processing the inverter output signal. The input signal
is a sinusoidal voltage of amplitude 1V peak. The inverter output signal, V1 in
Fig. 6.19, has an nonsymmetrical mark to space ratio because the threshold point
for the inverter is set at 0.5V; the halfway point for the two logic levels. The node-
bridge element is basically a voltage controlled voltage source where the device gain
and time delay can be programmed. In this first example the gain has been set
to 5 and the time delay to 0.5ns. Figure 6.20 illustrates the simulation TimeList
waveforms for this example mixed-mode circuit. The node-bridge shown in Fig. 6.19
is a very basic device. Moreover, by adding additional features, parameters like fall
and rise time can set to specific values. The next example demonstrates the use of
an active node-bridge.

1

Y1

V1
U=1 V

transient
simulation

TR1
Type=lin
Start=0
Stop=20us
IntegrationMethod=Gear
Order=6

D to A
Node
Bridge

VINN

VINP VOUTP

VOUTN

SUB1
File=a_node_bridge.sch

Vin V1 V5D

Figure 6.19: Analogue waveform driven digital device with output node-bridge

5The Gear integration algorithm is a powerful method for solving stiff systems of differential equations,
see Donald A. Calahan, Computer Aided Network Design, Revised edition, 1972, McGraw-Hill.

175

0 2e-6 4e-6 6e-6 8e-6 1e-5 1.2e-5 1.4e-5 1.6e-5 1.8e-5 2e-5

0

time

V
in

.V
t

0 2e-6 4e-6 6e-6 8e-6 1e-5 1.2e-5 1.4e-5 1.6e-5 1.8e-5 2e-5
0

5

time

V
5D

.V
t

0 2e-6 4e-6 6e-6 8e-6 1e-5 1.2e-5 1.4e-5 1.6e-5 1.8e-5 2e-5

0

1

time

V
1.

V
t

Figure 6.20: Digital TimeList waveforms for the circuit shown in Fig. 6.19

• Example 2: Pulse driven digital inverter with an active node bridge.

Illustrated in Fig. 6.21 is a similar circuit to the previous example. In Fig. 6.21 a
pulse generator drives a digital inverter. The inverter output signal is processed by
an active node-bridge derived from a basic BJT switching amplifier. The output
waveforms for this circuit are shown in Fig. 6.22. Notice that the pulse rise and fall
times are determined by the node-bridge amplifier and that the resulting analogue
signal amplitude is set to 5V.

176

1

Y1

T1
Type=npn
Is=1e-16
Nf=1
Vaf=0
Bf=100

R1
R=10k Ohm

C1
C=0.1 pF

V3
U1=0 V
U2=1 V
T1=5ns
T2=20ns

R2
R=4.7 k Ohm

V2
U=5 V

transient
simulation

TR1
Type=lin
Start=0
Stop=30ns
IntegrationMethod=Gear
Order=6

V1VPIN

VC

VB

Figure 6.21: Pulse driven digital inverter with active node-bridge

177

0 2e-9 4e-9 6e-9 8e-9 1e-8 1.2e-8 1.4e-8 1.6e-8 1.8e-8 2e-8 2.2e-8 2.4e-8 2.6e-8 2.8e-8 3e-8

0

1

time

V
1.

V
t

0 2e-9 4e-9 6e-9 8e-9 1e-8 1.2e-8 1.4e-8 1.6e-8 1.8e-8 2e-8 2.2e-8 2.4e-8 2.6e-8 2.8e-8 3e-8

0

1

time

V
P

IN
.V

t

0 2e-9 4e-9 6e-9 8e-9 1e-8 1.2e-8 1.4e-8 1.6e-8 1.8e-8 2e-8 2.2e-8 2.4e-8 2.6e-8 2.8e-8 3e-8

0

1

time

V
B

.V
t

0 2e-9 4e-9 6e-9 8e-9 1e-8 1.2e-8 1.4e-8 1.6e-8 1.8e-8 2e-8 2.2e-8 2.4e-8 2.6e-8 2.8e-8 3e-8

0

2

4

6

time

V
C

.V
t

Figure 6.22: Digital TimeList waveforms for the circuit shown in Fig. 6.21

178

• Example 3: A more complex mixed-mode simulation example.

The circuit shown in Fig. 6.23 brings together a number of the ideas outlined in these
tutorial notes. A 4-bit digital signal is generated from a simple asynchronous binary
counter operated from a digital clock signal. The counter output is transformed to
the analogue domain using a simple node-bridge, of the type introduced in mixed-
mode example 1. A 4-bit binary weighted DAC converts the transformed node-
bridge signals into the final analogue output signal. The DAC operational amplifier
is modelled as a gain block with a single pole frequency response and DC voltage
output limiting. The output waveforms for this example are shown in Fig. 6.24 and
the details of the operational amplifier model in Fig. 6.25.

Q

R

Q

S
TSUB5

File=tff.sch

Q

R

Q

S
TSUB6

File=tff.sch

Q

R

Q

S
TSUB7

File=tff.sch

1
SUB9
File=Logic_one.sch

S1
Num=1

S2
Num=2

D to A
Node
Bridge

VINN

VINP VOUTP

VOUTN

SUB10
File=a_node_bridge.sch

D to A
Node
Bridge

VINN

VINP VOUTP

VOUTN

SUB11
File=a_node_bridge.sch

R10
R=5k Ohm

D to A
Node
Bridge

VINN

VINP VOUTP

VOUTN

SUB12
File=a_node_bridge.sch

R4
R=2.5k

R2
R=10k Ohm

+
V+

V-

SUB14
File=spole_op_amp.sch

V1
U=18 V

transient
simulation

TR1
Type=lin
Start=0
Stop=40 m
IntegrationMethod=Gear
Order=6

V2
U=18 V

Q

R

Q

S
TSUB8

File=tff.sch

D to A
Node
Bridge

VINN

VINP VOUTP

VOUTN

SUB13
File=a_node_bridge.sch

R5
R=1.25k Ohm

R1
R=10k Ohm

CLOCK

B0

B1

B2

A_VOUT

B3

RESET

Figure 6.23: A more complex analogue-digital mixed-mode simulation example

179

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04
0

1

time

R
E

S
E

T.
V

t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

0

1

time

B
0.

V
t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

0

1

time

B
1.

V
t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

0

1

time

B
2.

V
t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04
0

1

time

C
LO

C
K

.V
t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04
-20

0

time

A
_V

O
U

T
.V

t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

0

1

time

B
3.

V
t

Figure 6.24: Digital TimeList waveforms for the circuit shown in Fig. 6.23

180

VINP
Num=1

VINN
Num=2

R1
R=200k Ohm

VOUT
Num=3

R3
R=50 Ohm

SRC1
G=1
T=0

SRC2
G=200k
T=0

R4
R=10k Ohm

C1
C=3.2uF

D1
Is=1e-15 A
N=1
Cj0=10 fF
M=0.5
Vj=0.7 V R5

R=5 Ohm

D2
Is=1e-15 A
N=1
Cj0=10 fF
M=0.5
Vj=0.7 V

R6
R=5 Ohm

VDCP
Num=4

VDCN
Num=5

Figure 6.25: Operational amplifier model with Rin = 200k Ω, pole frequency = 5Hz, DC
differential gain = 200k and Rout = 50 Ω

181

6.12 End Note

The examples described in these notes were all simulated using the latest CVS code version
of Qucs. Since release of version 0.0.8, Qucs has matured enough to allow it to be used for
mixed-mode simulation and many of the known bugs in Qucs 0.0.8 will be corrected with the
release of Qucs 0.0.9 some time in the future. Release 0.0.9 will represent another important
step in the development of a truly universal simulator. However, much more work needs to
be done on the development of models for use across the different physical domains. My
thanks to Michael Margraf and Stefan Jahn for all their hard work in correcting the bugs
which surfaced while the examples presented in this tutorial note where being tested.

182

7 Modelling Operational Amplifiers

7.1 Introduction

Operation amplifiers (OP AMP) are a fundamental building block of linear electronics.
They have been widely employed in linear circuit design since they were first introduced
over thirty years ago. The use of operational amplifier models for circuit simulation using
SPICE and other popular circuit simulators is widespread, and many manufacturers provide
models for their devices. In most cases, these models do not attempt to simulate the
internal circuitry at device level, but use macromodelling to represent amplifier behaviour
as observed at the terminals of a device. The purpose of this tutorial note is to explain
how macromodels can be used to simulate a range of the operational amplifier properties
and to show how macromodel parameters can be obtained from manufacturers data sheets.
This tutorial concentrates on models that can be simulated using Qucs release 0.0.9.

7.2 The Qucs built-in operational amplifier model

Qucs includes a model for an ideal operational amplifier. It’s symbol can be found in
the nonlinear components list. This model represents an operational amplifier as an ideal
device with differential gain and output voltage limiting. The model is intended for use as a
simple gain block and should not be used in circuit simulations where operational amplifier
properties are crucial to overall circuit performance. Fig. 7.1 shows a basic inverting
amplifier with a gain of ten, based on the Qucs OP AMP model. The simulated AC
performance of this circuit is shown in Fig. 7.2. From Fig. 7.2 it is observed that the circuit
gain and phase shift are constant and do not change as the frequency of the input signal
is increased. This, of course, is an ideal situation which practical operational amplifiers do
not reproduce. Let us compare the performance of the same circuit with the operational
amplifier represented by a device level circuit. Shown in Fig. 7.3 is a transistor circuit
diagram for the well known UA741 operational amplifier1. The gain and phase results for
the circuit shown in Fig. 7.1, where the OP AMP is modelled by the UA741 transistor
level model, are given in Fig. 7.4. The curves in this figure clearly illustrate the differences
between the two simulation models. When simulating circuits that include operational

1The UA741 operational amplifier is one of the most studied devices. It is almost unique in that a
transistor level model has been constructed for the device. Details of the circuit operation and modelling
of this device can be found in (1) Paul R. Grey et. al., Analysis and Design of Analog Integrated Circuits,
Fourth Edition, 2001, John Wiley and Sons INC., ISBN 0-471-32168-0, and (2) Andrei Vladimirescu,
The SPICE book, 1994, John Wiley and Sons, ISBN 0-471-60926-9.

183

dc simulation

DC1

ac simulation

AC1
Type=log
Start=1 Hz
Stop=100 MHz
Points=801

V1
U=1 V

OP1
G=1e6

Equation

Eqn1
d1=dB(Vout.v)
d2=phase(Vout.v)

R3
R=47 k

R4
R=4.7 k

Vout

Vin

Figure 7.1: Qucs schematic for a basic OP AMP inverting amplifier:Qucs OP AMP has
G=1e6 and Umax=15V.

amplifiers the quality of the OP AMP model can often be a limiting factor in the accuracy
of the overall simulation results. Accurate OP AMP models normally include a range
of the following device characteristics: (1) DC and AC differential gain, (2) input bias
current, (3) input current and voltage offsets, (4) input impedance, (5) common mode
effects, (6) slew rate effects, (7) output impedance, (8) power supply rejection effects, (9)
noise, (10) output voltage limiting, (11) output current limiting and (12) signal overload
recovery effects. The exact mix of selected properties largely depends on the purpose for
which the model is being used; for example, if a model is only required for small signal AC
transfer function simulation then including the output voltage limiting section of an OP
AMP model is not necessary or indeed may be considered inappropriate. In the following
sections of this tutorial article macromodels for a number of the OP AMP parameters listed
above are developed and in each case the necessary techniques are outlined showing how
to derive macromodel parameters from manufacturers data sheets.

184

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-20

-10

0

Frequency Hz

V
ou

t.v

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
0

20

40

Frequency Hz

dB
(V

ou
t.v

)

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
0

200

400

Frequency Hz

ph
as

e(
V

ou
t.v

)
D

eg
re

es

Figure 7.2: Gain and phase curves for a basic OP AMP inverting amplifier.

185

R1
R=3k

T3 T4

T6

T5T2

T8 T10

R2
R=1k

R4
R=1k

T11 T12

R3
R=50k

T13

T14

R5
R=39k

C1
C=30pF

T16

T7
P_VCC

P_VEE

VIN_N

VIN_P

T17

R6
R=50k

R7
R=50

T19

R9
R=40k

T18

T15

T21

R8
R=50k

T27

T26

T20

VOUT

R11
R=25

R10
R=50

T24

T23

Figure 7.3: Transistor level circuit for the UA741 operational amplifier.

186

1 10 100 1e3 1e4 1e5 1e6 1e7

0

5

10

Frequency Hz

V
ou

t.v

1 10 100 1e3 1e4 1e5 1e6 1e7

-20

0

20

Frequency Hz

dB
(V

ou
t.v

)

1 10 100 1e3 1e4 1e5 1e6 1e7
0

100

200

Frequency Hz

ph
as

(V
ou

t.v
)

Figure 7.4: Gain and phase curves for a times 10 inverting amplifier with the OP AMP
represented by a transistor level UA741 model.

187

R1
R=200k Ohm

C1
C=159.15nF

V1
U=1 V R3

R=4.7k Ohm

R2
R=47k Ohm

dc simulation

DC1

OP1
G=1

ac simulation

AC1
Type=lin
Start=1 Hz
Stop=10 MHz
Points=1800

SRC1
G=1 S
T=0

Equation

Eqn1
d2=phase(Vout.v)
d1=dB(Vout.v)

Vin

Vout

Figure 7.5: Modified Qucs OP AMP model to include single pole frequency response.

1 10 100 1e3 1e4 1e5 1e6 1e7

-20

0

20

Frequency Hz

dB
(V

ou
t.v

)

1 10 100 1e3 1e4 1e5 1e6 1e7

0

5

10

Frequency Hz

V
ou

t.v

1 10 100 1e3 1e4 1e5 1e6 1e7

100

150

200

Frequency Hz

ph
as

e(
V

ou
t.v

)
D

eg
re

es

Figure 7.6: Gain and phase curves for the circuit shown in Fig. 7.5.

188

7.3 Adding features to the Qucs OP AMP model

In the previous section it was shown that the Qucs OP AMP model had a frequency
response that is independent of frequency. By adding external components to the Qucs
OP AMP model the functionality of the model can be improved. The UA741 differential
open loop gain has a pole at roughly 5Hz and a frequency response that decreases at 20 dB
per frequency decade from the first pole frequency up to a second pole frequency at roughly
3 MHz. The circuit shown in Fig. 7.5 models the differential frequency characteristics of
a UA741 from DC to around 1 MHz. Figure 7.6 illustrates the closed loop frequency
response for the modified Qucs OP AMP model.

7.4 Modular operational amplifier macromodels

Macromodelling is a term given to the process of modelling an electronic device as a
”black box” where individual device characteristics are specified in terms of the signals,
and other properties, observed at the input and output terminals of the black box. Such
models operate at a functional level rather than at the more detailed transistor circuit
level, offering considerable gain in computational efficiency.2 Macromodels are normally
derived directly from manufacturers data sheets. For the majority of operational amplifiers,
transistor level models are not normally provided by manufacturers. One notable exception
being the UA741 operational amplifier shown in Fig. 7.3.
A block diagram of a modular3 general purpose OP AMP macromodel is illustrated in
Fig. 7.7. In this diagram the blocks represent specific amplifier characteristics modelled by
electrical networks composed of components found in all the popular circuit simulators4.
Each block consists of one or more components which model a single amplifier parameter or
a group of related parameters such as the input offset current and voltage. This ensures that
changes to one particular parameter do not indirectly change other parameters. Local nodes
and scaling are also employed in the macromodel blocks. Furthermore, because each block
operates separately, scaled voltages do not propagate outside individual blocks. Each block
can be modelled with a Qucs subcircuit that has the required specification and buffering
from other blocks. Moreover, all subcircuits are self contained entities where the internal
circuit details are hidden from other blocks. Such an approach is similar to structured
high-level computer programming where the internal details of functions are hidden from

2 Computational efficiency is increased mainly due to the fact that operational amplifier macromodels
have, on average, about one sixth of the number of nodes and branches when compared to a transistor
level model. Furthermore, the number of non-linear p-n junctions included in a macromodel is often
less than ten which compares favorable with the forty to fifty needed to model an amplifier at transistor
level.

3Brinson M. E. and Faulkner D. J., Modular SPICE macromodel for operational amplifiers, IEE Proc.-
Circuits Devices Syst., Vol. 141, No. 5, October 1994, pp. 417-420.

4Models employing non-linear controlled sources, for example the SPICE B voltage and current sources,
are not allowed in Qucs release 0.0.9. Non-linear controlled sources are one of the features on the Qucs
to-do list.

189

users. Since the device characteristics specified by each block are separate from all other
device characteristics only those amplifier characteristics which are needed are included
in a given macromodel. This approach leads to a genuinely structured macromodel. The
following sections present the detail and derivation of the electrical networks forming the
blocks drawn in Fig. 7.7. To illustrate the operation of the modular OP AMP macromodel
the values of the block parameters are calculated for the UA741 OP AMP and used in a
series of example simulations. Towards the end of this tutorial note data are presented for
a number of other popular general purpose operational amplifiers.

7.5 A basic AC OP AMP macromodel.

A minimum set of blocks is required for the modular macromodel to function as an ampli-
fier: an input stage, a gain stage and an output stage. These form the core modules of all
macromodels.

7.5.1 The input stage.

The input stage includes amplifier offset voltage, bias and offset currents, and the differ-
ential input impedance components. The circuit for the input stage is shown in Fig. 7.8,
where

1. R1 = R2 = Half of the amplifier differential input resistance (RD).

2. Cin = The amplifier differential input capacitance (CD).

3. Ib1 = Ib2 = The amplifier input bias current (IB).

4. Ioff = Half the amplifier input offset current (IOFF).

5. Voff1 = Voff2 = Half the input offset voltage (VOFF).

Typical values for the UA741 OP AMP are:

1. RD = 2 MΩ and R1 = R2 = 1MΩ

2. CD = Cin1 = 1.4 pF.

3. IB = Ib1 = Ib2 = 80 nA.

4. IOFF = 20 nA and Ioff1 = 10 nA.

5. VOFF = 0.7 mV and Voff1 = Voff2 = 0.35 mV.

190

Vcc

Vee

Out

In+

In-

In+ In-

Input Stage

Signal
adder

Common
mode stage

Slew rate
limiting stage

Vee Vcc

RPD

Voltage gain
stage 1

Voltage gain
stage 2

Output stage

Current limiting
stage

Voltage limiting
stage

Overdrive limiting
stage

Vcc Vee

Figure 7.7: Block diagram of an operational amplifier macromodel.

191

The differential output signal (VD) is given by V D−P1− V D−N1 and the common mode
output signal (VCM) by (V D−P1 + V D−N1)/2.

Cin1
C=1.4 pF

Ib1
I=80nA

R1
R=1M Ohm

R2
R=1M Ohm

IN_N1

IN_P1

VD_N1

VD_P1

VCM1Ioff1
I=10nA

Ib2
I=80nA

Voff1
U=0.35mV

Voff2
U=0.35mV

In-

In+

Vcm

Vd-

Vd+

Input
stage

SUB1
File=input_stage.sch

Figure 7.8: Modular OP AMP input stage block.

192

7.5.2 Voltage gain stage 1.

The circuit for voltage gain stage 1 is shown in Fig. 7.9, where

1. RD1 = 100 MΩ = A dummy input resistor - added to ensure nodes IN−P1 and
IN−N1 are connected by a DC path.

2. GMP1 = 1 S = Unity gain voltage controlled current generator.

3. RADO = The DC open loop differential gain (AOL(DC)) of the OP AMP.

4. CP1 = 1/(2*π*GBP), where GBP = the OP AMP gain bandwidth product.

Typical values for the UA741 OP AMP are:

1. RADO = 200kΩ. (AOL(DC) = 106 dB)

2. CP1 = 159.15 nF (The typical value for UA741 GBP is 1 MHz).

7.5.3 Derivation of voltage gain stage 1 transfer function

Most general purpose operational amplifiers have an open loop differential voltage gain
which has (1) a very high value at DC (2) a dominant pole (fp1) at a low frequency -
typically below 100 Hz, and (3) a gain response characteristic that rolls-off at 20 dB per
decade up to a unity gain frequency which is often in the MHz region. This form of response
has a constant gain bandwidth product (GBP) over the frequency range from fp1 to GBP.
A typical OP AMP differential open loop response is shown in Fig. 7.10. The voltage gain
transfer function for this type of characteristic can be modelled with the electrical network
given in Fig. 7.9, where the the AC voltage transfer function is

vout(POLE−1−OUT1) =
GMP1 ∗ (V (IN−P1)− V (IN−N1)) ∗RADO

1 + j(ω ∗RADO ∗ CP1)
(7.1)

POLE1

IN+

OUT

IN-

SUB1
File=pole1.sch

GMP1
G=1 S
T=0

RADC1
R=200k Ohm

CP1
C=159.15 nFIN_P1

IN_N1

POLE_1_OUT1

RD1
R=100M

Figure 7.9: Modular OP AMP first voltage gain stage.

193

Aol

Aol(DC)

1

fp1 GBP f Hz

Figure 7.10: OP AMP open loop differential voltage gain as a function of frequency.

Where

fP1 =
1

2π ∗RADO ∗ CP1
(7.2)

Let RADC = Aol(DC) and GMP1 = 1 S. Then, because fp1*AOL(DC) = GBP,

CP1 =
1

2π ∗GBP
(7.3)

194

ROS1
R=75 Ohm

EOS1
G=1
T=0

OUTSTG_OUT1

IN_P1

IN_N1

RD1
R=100M

In+

In-

Out

Output
stage

SUB1
File=out_stage.sch

Figure 7.11: Modular macromodel output stage.

7.5.4 Output stage.

The electrical network representing a basic output stage is given in Fig. 7.11, where

1. RD1 = 100 MΩ = A dummy input resistor - added to ensure nodes IN−P1 and
IN−N1 are connected by a DC path.

2. EOS1 G = 1 = Unity gain voltage controlled voltage generator.

3. ROS1 = OP AMP output resistance.

A typical value for the UA741 OP AMP output resistance is ROS1 = 75Ω.

7.5.5 A subcircuit model for the basic AC OP AMP macromodel

The model for the basic AC OP AMP macromodel is shown in Fig. 7.12. The input stage
common mode voltage (V cm) is not used in this macromodel and has been left floating. To
test the performance of the AC macromodel it’s operation was compared to the transistor
level UA741 model. Figure 7.13 shows a schematic circuit for two inverting amplifiers, each
with a gain of ten, driven from a common AC source. One of the amplifiers uses the simple
AC macromodel and the other the transistor level UA741 model. Figure 7.14 illustrates
the output gain and phase curves for both amplifiers. In general the plotted curves are
very similar. However, at frequencies above the GBP frequency the basic AC macromodel
does not correctly model actual OP AMP performance. This is to be expected because
the simple AC macromodel does not include any high frequency modelling components.
Notice also that the DC output voltages for vout and vout3 are very similar, see the DC
tabular results given in Fig. 7.13.

195

POLE1

IN+

OUT

IN-

SUB4
File=pole1.sch

OUT1In+

In-

Out

Output
stage

SUB3
File=out_stage.sch

In-

In+

OP AMP
IP1O

SUB5
File=op_amp_ac_IP1O.sch

Vcm

Vd-

Vd+

Input
stage

In-

In+

SUB2
File=input_stage.sch

IN_P1

IN_N1

Figure 7.12: Simple AC OP AMP macromodel.

196

V1
U=1 V

ac simulation

AC1
Type=lin
Start=1 Hz
Stop=10 MHz
Points=1801

dc simulation

DC1

R2
R=1k Ohm

In-

In+

OP AMP
IP1O

SUB5

Equation

Eqn1
yp=phase(vout.v)
yp3=phase(vout3.v)
ydb=dB(vout.v)
ydb3=dB(vout3.v)

R1
R=10k Ohm

R8
R=1k Ohm UA741_tran

VEE

VCC

+

-

SUB6

R3
R=10k Ohm

V2
U=15 V

V3
U=15 V

vin

vout

vout3

number
1

vout.V
0.0068

vout3.V
0.0069

Figure 7.13: Test circuit for an inverting amplifier. Output signals: (1) vout for AC macro-
model, (2) vout3 for UA741 transistor model.

197

1 10 100 1e3 1e4 1e5 1e6 1e7

-20

0

20

Frequency Hz

dB
(v

ou
t.v

)

1 10 100 1e3 1e4 1e5 1e6 1e7

100

150

200

Frequency Hz

ph
as

e(
vo

ut
.v

)
in

 d
eg

re
es

1 10 100 1e3 1e4 1e5 1e6 1e7

-20

0

20

Frequency Hz

db
(v

ou
t3

.v
)

1 10 100 1e3 1e4 1e5 1e6 1e7
0

100

200

Frequency Hz

ph
as

e(
vo

ut
3.

v)
 in

 d
eg

re
es

Figure 7.14: Simulation test results for the circuit shown in Fig. 7.13.

198

7.6 A more accurate OP AMP AC macromodel

Most general purpose OP AMPs have a high frequency pole in their differential open loop
gain characteristics. By adding a second gain stage to the simple AC macromodel the
discrepancy in the high frequency response can be corrected. The model for the second
gain stage is shown in Fig. 7.15. This additional gain stage has a structure similar to the
first gain stage, where

1. RD2 = 100 MΩ = A dummy input resistor - added to ensure nodes IN_P2 and IN_N2

are connected by a DC path.

2. GMP2 = 1 S = Unity gain voltage controlled current generator.

3. RP2 = 1Ω.

4. CP2 = 1/(2π*fp2), where fp2 = the second pole frequency in Hz.

A typical value for the UA741 OP AMP high frequency pole is fp2 = 3M Hz

7.6.1 Derivation of voltage gain stage 2 transfer function.

The differential voltage gain transfer function for voltage gain stage 2 is given by

vout(POLE−2−OUT1) =
GMP2 ∗ (V (IN−P2)− V (IN−N2)) ∗RP2

1 + j(ω ∗RP2 ∗ CP2)
(7.4)

Let RP2 = 1Ω and GMP2 = 1 S. Then

vout(POLE−2−OUT1) =
V (IN−P2)− V (IN−N2)

1 + j(ω ∗ CP2)
(7.5)

and

CP2 =
1

2π ∗ fp2
(7.6)

POLE_2_OUT1

POLE2

IN+

OUT

IN-

SUB1
File=pole2.sch

RD2
R=100M

GMP2
G=1 S
T=0

RP2
R=1 Ohm

CP2
C=53.05nFIN_P2

IN_N2

Figure 7.15: Modular OP AMP second voltage gain stage.

199

V1
U=1 V

C1
C=100mF

R1
R=10M Ohm

UA741_tran

VEE

VCC

+

-

SUB2
V2
U=15 V

V3
U=15 V

C2
C=100 mF

R2
R=10M Ohm

dc simulation

DC1

ac simulation

AC1
Type=log
Start=1 Hz
Stop=100MHz
Points=241

In+

In-

OP AMP
IP1P2O

SUB1
File=op_amp_ac_IP1P2O.sch

Equation

Eqn1
y4=rad2deg(unwrap(angle(vout3.v)))
y=dB(vout.v)
y3=dB(vout3.v)
y2=phase(vout.v)

vin

vout3

vout

Figure 7.16: Test circuit for simulating OP AMP open loop differential gain.

7.6.2 Simulating OP AMP open loop differential gain

The circuit shown in Fig. 7.16 allows the open loop differential gain (Aol(f)) to be simu-
lated. This circuit employes a feedback resistor to ensure DC stability. Fig. 7.16 illustrates
two test circuits driven from a common AC source. This allows the performance of the
AC macromodel and the UA741 transistor level model to be compared. The AC voltage
transfer function for the test circuit is

vout(f) =
Aol(f)

1 +
Aol(f)

1 + jω ∗R ∗ C

vin(f) (7.7)

where vout(f) = (V + − V −) ∗ Aol(f), V + = vin(f), and V − =
vout(f)

1 + jω ∗R ∗ C
Provided

Aol(f)

ω ∗R ∗ C
<< 1, equation (7) becomes vout(f) ⇒ Aol(f) ∗ vin(f). Hence, for

those frequencies where this condition applies vout(f) = Aol(f) when vin(f) = 1 V. Figure
17 shows plots of the open loop simulation data. Clearly with the test circuit time constant
set at 1e6 seconds the data is accurate for frequencies down to 1 Hz.

200

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
1e-4
1e-3
0.01

0.1
1

10
100
1e3
1e4
1e5

Frequency Hz

vo
ut

.v

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
0.03

0.1

1

10

100

1e3

1e4

1e5

Frequency Hz

vo
ut

3.
v

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-100

0

100

Frequency Hz

dB
(v

ou
t.v

)

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8

0

100

Frequency Hz

dB
(v

ou
t3

.v
)

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-200

-100

0

Frequency Hz

ph
as

e(
vo

ut
.v

)
de

gr
ee

s

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8

-200

0

Frequency Hz

ph
as

e(
vo

ut
3.

v)
 d

eg
re

es

Figure 7.17: Simulation test results for the circuit shown in Fig. 7.16.

201

7.7 Adding common mode effects to the OP AMP AC
macromodel

The open-loop differential gain AD(f) for most general purpose operational amplifiers can
be approximated by

AD(f) = AD(0)
1

1 + j
f

fPD

(7.8)

Similarly, the common-mode gain ACM(f) can be represented by the same single-pole
response and a single zero response given by

ACM(f) = ACM(0)

1 + j
f

fCMZ

1 + j
f

fPD

(7.9)

Defining the common-mode rejection ratio CMRR(f) of an OP AMP as

CMRR(f) =
AD(f)

ACM(f)
(7.10)

gives

CMRR(f) = CMRR(0)
1

1 + j
f

fCMZ

(7.11)

where

CMRR(0) =
AD(0)

ACM(0)
(7.12)

Common-mode effects can be added to OP AMP macromodels by including a stage in the
modular macromodel that introduces a zero in the amplifier frequency response. Output
VCM from the macromodel input stage senses an amplifier common mode signal. This
signal, when passed through a CR network generates the required common mode zero.
Figure 18 gives the model of the zero generating network, where.

1. RDCMZ = 650 MΩ = common-mode input resistance/2.

2. RCM1 = 1 MΩ

3. ECM1 G = 31.623 =

RCM1

RCM2
CMRR(0)

. (NOTE: RCM1/RCM2 is a scaling factor.)

4. CCM1 = 795.8 pF =
1

2π ∗RCM1 ∗ fCMZ

.

202

RCM1
R=1M

CCM1
C=795.8 pF

RCM2
R=1

ECM1
G=31.623
T=0

CMV_OUT1

CMZERO

OUT

IN+

IN-

SUB1
File=cmzero.sch

IN_P1

IN_N1

RDCMZ
R=650M

Figure 7.18: Common-mode zero macromodel

5. RCM2 = 1 Ω

Typical values for the UA741 OP AMP are:

1. Common-mode input resistance = 1300 MΩ.

2. CMRR(0) = 90 dB

3. fCMZ = 200 Hz.

The AC voltage transfer function for the common-mode zero transfer function is

V out(CMV_OUT1) = G(ECM1)
RCM2

RCM1

[
1 + jω ∗RCM1 ∗ CCM1

1 + jω ∗RCM2 ∗ CCM1

]
[V (IN_P1)− V (IN_N1)]

(7.13)

As
RCM2

RCM1
<< 1, the pole introduced by the common-mode RC network is at a very high

frequency and can be neglected. Combining the common-mode zero with the previously
defined stage models yields the macromodel shown in Fig. 7.19. In this model the differ-
ential and common-mode signals are combined using a simple analogue adder based on
voltage conrolled current generators.

7.7.1 Simulating OP AMP common-mode effects

OP AMP common-mode effects can be simulated using the circuit shown in Fig. 7.20.5

The resulting output voltages (vout.v and vout3.v) for a test circuit with matched resistors

are shown plotted in Fig. 7.21, where
vout(0)

vin
=

1

CMRR(0)
. Clearly the test results

5Brinson M.E. and Faulkner D.J., New approaches to measurement of operational amplifier common-
mode rejection ratio in the frequency domain, IEE Proc-Circuits Devices Sys., Vol 142, NO. 4, August
1995, pp 247-253.

203

VSUM
IN1+

IN1-

IN2+

IN2-

OUT

SUB5
CMZERO

OUT

IN+

IN-

SUB1
File=cmzero.sch

OUT1In+

In-

Out

Output
stage

SUB2

POLE2

IN+

OUT

IN-

SUB3

In-

In+

Vcm

Vd-

Vd+

Input
stage

SUB6

IN_N1

IN_P1

In-

OP_AMP
ICMZP1P2O

In+

SUB7
File=op_amp_ac_ICMZP1P2O.sch

POLE1

IN+

OUT

IN-

SUB4

RSUM1
R=1

GMSUM1
G=1 S
T=0

GMSUM2
G=1 S
T=0

IN1_P1

IN1_N1

IN2_P1

IN2_N1

SUM_OUT1
VSUM

IN1+

IN1-

IN2+

IN2-

OUT

SUB8
File=VSUM.sch

WHERE

Figure 7.19: AC macromodel including common-mode zero.

204

V1
U=1 V

R2
R=10k

R1
R=10k

R3
R=10k

ac simulation

AC1
Type=log
Start=1 Hz
Stop=10 kHz
Points=401

R5
R=10k

R7
R=10k

UA741_tran

VEE

VCC

+

-

SUB2
File=ua742_tran.sch

R6
R=10k

V2
U=15 V

V3
U=15 V

dc simulation

DC1
In-

OP_AMP
ICMZP1P2O

In+

SUB1
File=op_amp_ac_ICMZP1P2O.sch

R8
R=10k

R4
R=10k

vin
vout

vout3

Figure 7.20: Simulation of OP AMP common-mode performance.

for the macromodel and the UA741 transistor model are very similar. In the case of the
macromodel typical device parameters were used to calculate the macromodel component
values. However, in the transistor level model the exact values of the component parameters
are unknown.6

6The UA741 transistor level model is based on an estimate of the process parameters that determine the
UA741 transistor characteristics. Hence, the device level model is unlikely to be absolutely identical to
the model derived from typical parameters values found on OP AMP data sheets. From the simulation
results the CMRR(0) values are approximately (1) macromodel 90 dB, (2) UA741 transistor model
101 dB. Similarly, the common-mode zero frequencies are approximately (1) macromodel 200 Hz, (2)
UA741 transistor model 500 Hz.

205

1 10 100 1e3 1e4
3e-5

1e-4

1e-3

Frequency Hz

vo
ut

.v

1 10 100 1e3 1e4
3e-6

1e-5

1e-4

Frequency Hz

vo
ut

3.
v

Figure 7.21: Simulation test results for the circuit shown in Fig. 7.20.

206

7.8 Large signal transient domain OP AMP macromodels

The modular macromodel introduced in the previous sections concentrated on modelling
OP AMP performance in the small signal AC domain. Large signal models need to take
into account the passage of signals through an OP AMP in the time domain and limit the
excursion of voltage and current swings to the practical values found in actual amplifiers.
Starting with the AC domain macromodel introduced in the previous sections, adding a
slew rate limiting stage and a overdrive stage will more correctly model OP AMP high
speed large signal limitations. Furthermore, by adding output voltage and current limiting
stages the OP AMP macromodel will correctly model large signal effects when signal levels
approach circuit power supply voltages or the OP AMP output current limits.

7.8.1 Slew rate macromodel derivation

The slew rate of an OP AMP can be modelled by limiting the current charging CP1 in
the first voltage gain stage POLE1. From Fig. 7.9

GMP1 (V (IN−P1)− V (IN−N1)) =
V (POLE−1−OUT1)

RADO
+CP1∗ dV (POLE−1−OUT1)

dt
(7.14)

Hence, provided RADO is large7

GMP1 (V (IN−P1)− V (IN−N1)) ' CP1 ∗ dV (POLE−1−OUT1)

dt
(7.15)

But CP1 =
1

2π ∗GBP
Yielding

GMP1 (V (IN−P1)− V (IN−N1)) ' 1

2π ∗GBP
∗ dV (POLE−1−OUT1)

dt
(7.16)

Moreover, if
dV (POLE−1−OUT1)

dt
is set equal to the OP-AMP slew rate then the current

charging CP1 will be limited to the maximum allowed. In Fig. 7.9 GMP1 is 1 S.

Therefore, voltage difference V (IN−P1)− V (IN−N1)

must be set to
1

2π ∗GBP
∗ dV (POLE−1−OUT1)

dt
.

This is done by the network SLEWRT shown in Fig. 7.22, where

7This condition is normally true because RADO is set to the DC open loop differential gain in macro-
module POLE1.

207

SRC1
G=1 S
T=0

RSCALE1
R=100 Ohm

VSR1
U=7.26 VIN_P1

IN_N1

D1

RSRT1
R=1

GMSRT1
G=0.01 S
T=0

SLEWRT_OUT1
IN+

IN-

OUT

SLEWRT

SUB1
File=slewrt.sch

Figure 7.22: OP AMP slew rate macromodel.

1. RSCALE1 = 100 Ω = Scaling resistance (Scale factor x 100).

2. SRC1 G = 1 S.

3. VSR1 = V1.

4. GMSRT1 G = 0.01 S. (Scale factor = 1/100).

5. RSRT1 = 1 Ω

And,

1. V 1 =
100 ∗ Positive−slew−rate

2π ∗GBP
− 0.7V

2. V 2 =
100 ∗Negative−slew−rate

2π ∗GBP
− 0.7V

3. The diode parameters are IS=1e-12 IBV=20mA BV=V1+V2, others default.

Typical values for the UA741 OP AMP are:

1. Positive−slew−rate = Negative−slew−rate = 0.5V/µS.

2. V 1 = V 2 = 7.25V.

Scaling is used in the slew rate model to allow the use of higher voltages in the clamping
circuit. Increased voltages reduce errors due to the forward biased junction voltage. Cur-
rent limiting results by clamping the voltage across resistor RSCALE1 with a diode. This
diode acts as a zener diode and saves one nonlinear junction when compared to conven-
tional clamping circuits. The output section of the SLEWRT circuit removes the internal
scaling yielding an overall gain of unity for the module.

The circuit in Fig. 7.23 demonstrates the effect of slew rate limiting on OP AMP transient
performance. Three identical OP AMP inverter circuits are driven from a common input
10 kHz AC signal source. Voltage controlled voltage sources are used to amplify the input
signal to the second and third circuits. The three input signals are (1) 5 V peak, (2)
10 V peak and (3) 15 V peak respectively. The input and output waveforms for this
circuit are illustrated in Fig. 7.24. The effect of slew rate limiting on large signal transient
performance is clearly demonstrated by these curves. In the case of the 15 V peak input
signal the output signal (vout3.Vt) has a slope that is roughly 0.5 V per µS.

208

In-

In+

OP_AMP
ICMZ
SLEWRT
P1P2O

SUB1
File=op_amp_ac_ICMZP1P2O.sch

In-

In+

OP_AMP
ICMZ
SLEWRT
P1P2O

SUB2
File=op_amp_ac_ICMZP1P2O.sch

In-

In+

OP_AMP
ICMZ
SLEWRT
P1P2O

SUB3
File=op_amp_ac_ICMZP1P2O.sch

V1
U=5 V

SRC1
G=2
T=0

SRC2
G=3
T=0

transient
simulation

TR1
Type=lin
Start=0
Stop=200usvin

vout1

vout2

vout3

Figure 7.23: OP AMP slew rate test circuit.

209

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4

-5

0

5

time

vi
n.

V
t

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4

-5

0

5

time

vo
ut

1.
V

t

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4

-10

0

10

time

vo
ut

2.
V

t

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4

-10

0

10

20

time

vo
ut

3.
V

t

Figure 7.24: OP AMP slew rate simulation waveforms for the circuit shown in Fig. 7.23.

210

P_VEE1

P_VCC1

P_IN1

VOVDRV1
U=2.5 V

VOVDRV2
U=2.5 V

DOVRV1
Is=8e-16 A

DOVDRV1
Is=8e-16 A

VLIM1
U=2 V

VLIM2
U=2 V

P_IN2

P_VCC2

P_VEE2

VCC

VEE

VLIMITIN
SUB2
File=vlimit.sch

VCC

VEE

IN

OVDRV SUB1
File=OVDRV.sch

DVL2
Is=8e-16 A

DVL1
Is=8e-16 A

Figure 7.25: OP AMP overdrive and output voltage limiting macromodels.

7.8.2 Modelling OP AMP overdrive and output voltage limiting

Large transient signals can overdrive an OP AMP causing it’s output voltage to saturate.
On removal of the overdrive signal an OP AMP takes a finite time to recover8 and return
to normal linear circuit behaviour. When saturated the output voltage is clamped at a
voltage close to the plus or minus power rail voltage. The overdrive and voltage clamping
properties of an OP AMP are related and macromodels for both effects need to be added to
an OP AMP model when simulating OP AMP overdrive characteristics. However, in many
circuit simulations the overdrive macromodel can be left out without loss of functionality
or accuracy.

The effect of overdrive signals can be modelled by a voltage clamping circuit which takes
account of OP AMP recovery time from voltage overdrive. This extra element clamps the
output of the POLE1 module at a level above the OP AMP DC supply voltages. The
overall effect of the overdrive circuit is to delay the restoration of linear circuit behaviour
when an overload signal is removed. In contrast to the overdrive module the output voltage
limiting module clamps the output voltage to a voltage close to the power rail voltages,
clipping any output voltage excursions above the power rail voltage levels. Figure 7.25
illustrates the macromodels for the overdrive and output voltage limiting models, where

1. VOVDR1 = 2.5 V = (Positive slew rate)*(Amplifier recovery time).

2. VOVDR2 = 2.5 V = (Negative slew rate)*(Amplifier recovery time).

3. VLIM1 = 2.0 V = (+ supply voltage) - (Maximum positive output voltage) + 1 V.

8Overload recovery time of an OP AMP is the time required for the output voltage to recover to a rated
output voltage from a saturated condition. Typical values are in the µ S region.

211

4. VLIM2 = 2.0 V = (- supply voltage) - (Maximum negative output voltage) + 1 V.

5. The diode parameters are Is = 8e-16 A, others default.

Typical values for the UA741 OP AMP are:

1. Amplifier recovery time 5 µS.

2. + supply voltage = 15 V.

3. - supply voltage = -15 V.

4. Maximum positive output voltage = 14 V.

5. Maximum negative output voltage = -14 V.

The test circuit given in Fig. 7.26 illustrates the effects of signal overdrive and output
voltage clamping on a unity gain buffer circuit. The test input signal is a 1 kHz signal with
the following drive voltages (1) vin1 = 10 V peak, (2) vin2 = 18 V peak, and (3) vin3 = 22
V peak. The corresponding output waveforms are shown in Fig. 7.27. These indicate that
increasing overdrive signals results in longer OP AMP recovery times before the amplifier
returns to linear behaviour.

7.8.3 Modelling OP AMP output current limiting

Most general purpose OP AMPs have a network at the circuit output to protect the device
from high load currents generated by shorting the output terminal to ground or some other
situation where a high current flows through the OP AMP output stage. The electrical
network shown in Fig. 7.28 acts as a current limiter: current flowing between pins P_IN1

and P_OUT1 is sensed by current controlled voltage generator HCL1. The voltage output
from generator HCL1 is in series with voltage controlled generator ECL1. The connection
of these generators is in opposite polarity. Hence, when the load current reaches the
maximum allowed by the OP AMP either diode DCL1 or DCL2 turns on clamping the OP
AMP output voltage preventing the output current from increasing. The parameters for
the current limiter macromodel are given by

1. RDCL1 = 100 MΩ = Dummy resistor.

2. ECL1 G = 1.

3. HCL1 G = 36Ω = 0.9 V/(Maximum output current A).

4. The diode parameters are Is = 1e-15 A, others default.

212

V2
U=15 V

V3
U=15 V

SRC1
G=1.8
T=0

SRC2
G=2.2
T=0

V1
U=10 V

transient
simulation

TR1
Type=lin
Start=0
Stop=1.20 ms

dc simulation

DC1

In+

In-

OP_AMP
ICMZ
SLEWRT OVDRV
P1P2O

VCC

VEE

SUB1

In+

In-

OP_AMP
ICMZ
SLEWRT OVDRV
P1P2O

VCC

VEE

SUB3

In+

In-

OP_AMP
ICMZ
SLEWRT OVDRV
P1P2O

VCC

VEE

SUB2

vin1

vin2

vin3

vout1

vout2

vout3

Figure 7.26: OP AMP overdrive and output voltage limiting test circuit.

213

0 1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 1e-3 0.0011 0.0012

-10

0

10

 Time

vi
n1

.V
t

vo
ut

1.
V

t

0 1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 1e-3 0.0011 0.0012

-20

0

20

Time

vi
n2

.V
t

vo
ut

2.
V

t

0 1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 1e-3 0.0011 0.0012

-20

0

20

Time

vi
n3

.V
t

vo
ut

3.
V

t

Figure 7.27: OP AMP overdrive and output voltage limiting waveforms for the circuit
shown in Fig. 7.26.

P_IN1

P_OUT1

RDCL1
R=100M

HCL1
G=36
T=0

ECL1
G=1
T=0

D1
Is=1e-15 A

D2
Is=1e-15 A

CLIMIT

IN OUT

SUB1
File=CLIMIT.sch

Figure 7.28: OP AMP output current limiter macromodel.

214

V2
U=15 V

V3
U=15 V

V1
U=10 V

S1 S2

R3
R=2k

R1
R=1k

R2
R=1k

R4
R=2k

R5
R=2k

R6
R=2k

S3 S4 S5

In+

In-
VCC

VEE

OP_AMP
ICMZ
SLEWRT OVDRV
P1P2O CLIMIT

SUB1

transient
simulation

TR1
Type=lin
Start=0
Stop=8 ms

dc simulation

DC1

vin

vout

Figure 7.29: OP AMP output current limiter test circuit.

0 5e-4 1e-3 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065 0.007 0.0075 0.008

-10

0

10

Time

vi
n.

V
t

0 5e-4 1e-3 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065 0.007 0.0075 0.008

-10

0

10

Time

vo
ut

.V
t

Figure 7.30: Simulation waveforms for current limiter test circuit shown in Fig. 7.29.

215

Parameter UA741 OP27 OP42 OPA134 AD746 AD826
Offset voltage (V) 7e-4 30e-6 4e-4 5e-4 3e-4 5e-4
Bias current (A) 80e-9 15e-9 130e-12 5e-12 110e-12 3-3e-6
Offset current (A) 20e-9 12e-9 6e-12 2e-12 45e-12 25e-9
Differential input res. (ohm) 2e6 4e6 1e12 1e13 2e11 300e3
Differential input cap. (F) 1.4e-12 6e-12 2e-12 5.5e-12 1.5e-12
Avd(0) dB 106 125 120 120 109 75
fp1 (Hz) 5 6 20 5 0.25 10e3
fp2 (Hz) 3e6 17e6 20e6 10e6 35e6 100e6
CMRR(0) dB 90 125 96 100 85 100
fcm (Hz) 200 2e3 100e3 500 3e3 2e3
GBP (Hz) 1e6 8e6 10e6 8e6 13e6 35e6
Rout (ohm) 75 70 50 10 10 8
Slew rate (V per micro sec.) 0.5 2.8 50 20 75 300
Overdrive recovery time (S) 5e-6 700e-9 0.5e-6
DC supply current (A) 1.4e-3 2.5e-3 5.1e-3 4e-3 7e-3 6.6e-3
Short circuit output current(A) 34e-3 32e-3 30e-3 40e-3 25e-3 90e-3
Common-mode input res. (ohm) 1.3e8 2e9 1e13 2.5e11
Common-mode input cap. (F) 5e-12 5.5e-12

Table 7.1: Typical OP AMP parameters taken from device data sheets.

A typical value for the UA741 OP AMP short circuit current is 34 mA at 25oC.

Figures 7.29 and 7.30 show a simple current limiter test circuit and the resulting test
waveforms. In this test circuit time controlled switches decrease the load resistors at 1 mS
intervals. When the load current reaches roughly 34 mA the output voltage is clamped
preventing further increases in load current.

216

7.9 Obtaining OP AMP macromodel parameters from
published device data

The OP AMP modular macromodel has one very distinct advantage when compared to
other amplifier models namely that it is possible to derive the macromodel parameters
directly from a common set characteristics found on the majority of manufacturer’s data
sheets. The data given in Table. 8.1 shows a typical range of values found on OP AMP data
sheets. In cases where a particular parameter is not given then a starting point is to use a
value obtained from a data sheet of an equivalent device. The macromodel element values
are then calculated using the equations presented in the previous sections of this tutorial.
As a rule of thumb it is good practice to test each block in the modular macromodel prior
to constructing a complete OP AMP macromodel.

7.10 More complete design examples.

In this section two larger design examples are presented. These demonstrate the charac-
teristics of the various OP AMP macromodels introduced in the previous text and attempt
to give readers guidance as to the correct model to choose for a particular simulation.

7.10.1 Example 1: State variable filter design and simulation

The circuit given in Fig. 7.31 is a state variable filter which simultaneously generates band-
pass, high-pass and low-pass responses. The circuit consists of an OP AMP adder and two
integrator circuits and requires three OP AMPS, two capacitors and a number of resistors.
The selection of the type of OP AMP for successful operation of this filter is critical because
devices with high offset voltage will cause the integrators to saturate and the circuit will
not function correctly. For operation below 20 kHz the OP27 is a good choice of OP
AMP because of it’s low offset voltage in the µV region. In this simulation both the DC
characteristics and small signal AC transfer characteristics are needed to check the filter
design, hence the AC macromodel with the DC parameters embedded in the input stage
should allow accurate modelling of the filter performance.9 The insert in Fig. 7.31 list the
DC output voltages for each of the OP AMP stages indicating that the integrators are not
saturated. The design of the state variable filter uses the following equations:

1. The superposition principle yields

vhp = −R1

R6
vin− R1

R7
vlp+

(
1 +

R1

R7 ‖ R6

)
R4

R4 +R5
vbp (7.17)

When R1 = R6 = R7

9The magnitude of the output signals from the filter should also be checked to ensure that these signals
do not exceed the power supply voltages.

217

vhp = −vin− vlp+
3R4

R4 +R5
vbp (7.18)

2. Also

vbp = − 1

j f
f0

vhp (7.19)

where

f0 =
1

2πR2C1

=
1

2πR3C2

(7.20)

3. Similarly

vlp = − 1

j f
f0

vbp = − 1

(f
f0

)2
vhp (7.21)

4. Hence

vhp

vin
=

(f
f0

)2

1− (f
f0

)2 + (j
Q

)(f
f0

)
(7.22)

Where

Q =
1

3
(1 +

R5

R4
) (7.23)

5. Also

vbp

vin
=

j f
f0

1− (f
f0

)2 + (j
Q

)(f
f0

)
(7.24)

6. Also
vlp

vin
=

−1

1− (f
f0

)2 + (j
Q

)(f
f0

)
(7.25)

Assuming f0 = 1 kHz and the required bandwidth of the band pass filter is 10 Hz, on setting
R1 = R6 = R7 = 47kΩ and C1 = C2 = 2.2nF , calculation yields R2 = R3 = 72.33kΩ10 In
this design Q = 1k/10 = 100. Hence setting R4 = 1kΩ yields R5 = 294kΩ (1 % tolerance).
The simulation waveforms for the band pass output are given in Fig. 7.32 11. When the
circuit Q factor is reduced to lower values the other filter outputs act as traditional high
and low pass filters. The simulation results for Q factor one are shown in Fig. 7.33.

10The values of R2 and R3 need to be trimmed if the filter center frequency and bandwidth are required
to high accuracy.

11Note that the input signal vin has been set at 0.1 V peak. The circuit has a Q factor of 100 which
means that the band pass output voltage is 10 V peak. Input signals of amplitude much greater than
0.1 V are likely to drive the output signal into saturation when the power supply voltages are ±15V .

218

R4
R=1k

C1
C=2.2n

C2
C=2.2n

V1
U=0.1

R2
R=72.33k

R3
R=72.33k

R7
R=47k

R1
R=47k

R6
R=47k

Equation

Eqn1
Av_BP=dB(vbp.v/vin.v)
Av_phase=phase(vbp.v/vin.v)

dc simulation

DC1

R5
R=294 k

ac simulation

AC1
Type=lin
Start=100Hz
Stop=1900 Hz
Points=500

In-

In+

OP27
ICMZ
P1P2O

SUB3

In-

In+

OP27
ICMZ
P1P2O

SUB2

In-

In+

OP27
ICMZ
P1P2O

SUB1

vbpvhp

vin

vlp

number
1

V1.I
8.56 e-11

vbp.V
-0.00149

vhp.V
-0.00149

vlp.V
0.000514

Figure 7.31: Three OP AMP state variable filter.

7.10.2 Example 2: Sinusoidal signal generation with the Wien bridge
oscillator

The Wien bridge sinusoidal oscillator has become a classic due to it’s simplicity and low
distortion capabilities. It is an ideal vehicle for demonstrating the properties of OP AMP
macromodels and indeed the performance of circuit simulators. Shown in Fig. 7.34 is the
basic Wien bridge oscillator which consists of a single OP AMP with negative and positive
feedback circuits. The design equations for this circuit are

1. Non-inverting amplifier.
vout

v+
= 1 +

R3

R4
(7.26)

2. Feedback factor

b =
vout

v+
=

1

3 + j(f
f0
− f0

f
)

(7.27)

Where f0 =
1

2πR1C1
=

1

2πR2C2

3. Loop gain

The oscillator loop gain bAv must equal one for stable oscillations. Hence,

bAv =
1 + R3

R4

3 + j(f
f0
− f0

f
)

(7.28)

219

200 400 600 800 1e3 1.2e3 1.4e3 1.6e3 1.8e3

-20

0

20

40

Frequency Hz

A
v_

B
P

 in

dB

200 400 600 800 1e3 1.2e3 1.4e3 1.6e3 1.8e3

-100

-50

0

50

100

Frequency Hz

A
V

_p
ha

se
 in

 d
eg

re
es

Figure 7.32: Simulation waveforms for current state variable filter circuit shown in Fig. 7.31.

220

1 10 100 1e3 1e4 1e5 1e6

0

0.05

0.1

Frequency Hz

vh
p.

v

1 10 100 1e3 1e4 1e5 1e6

0

0.05

0.1

Frequency Hz

vl
p.

v

Figure 7.33: State variable low pass and high pass response for Q = 1, R5 = 2kΩ.

Moreover, at f = f0,

bAv =
1 + R3

R4

3
(7.29)

Setting R3/R4 slightly greater than two causes oscillations to start and increase in
amplitude during each oscillatory cycle. Furthermore, if R3/R4 is less than two
oscillations will never start or decrease to zero.

Figure 7.35 shows a set of Wien bridge oscillator waveforms. In this example the OP
AMP is modelled using the OP27 AC macromodel. This has been done deliberately to
demonstrate what happens with a poor choice of OP AMP model. The oscillator frequency
is 10 kHz with both feedback capacitors and resistors having equal values. Notice that
the oscillatory output voltage continues to grow with increasing time until it’s value far
exceeds the limit set by a practical OP AMP power supply voltages. The lower of the
two curves in Fig. 7.35 illustrates the frequency spectrum of the oscillator output signal.
The data for this curve has been generated using the Time2Freq function. Adding slew
rate and voltage limiting to the OP27 macromodel will limit the oscillator output voltage
excursions to the OP AMP power supply values. The waveforms for this simulation are
shown in Fig. 7.36. When analysing transient response data using function Time2Freq it is
advisable to restrict the analysis to regions of the response where the output waveform has
reached a steady state otherwise the frequency spectrum will include effects due to growing,
or decreasing, transients. The voltage limiting network clips the oscillator output voltage
restricting its excursions to below the OP AMP power supply voltages. The clipping is

221

very visible in Fig. 7.36. Notice also that the output waveform is distorted and is no longer
a pure sinusoidal waveform of 10 kHz frequency. Odd harmonics are clearly visible and
the fundamental frequency has also decreased due to the signal saturation distortion. In a
practical Wien bridge oscillator the output waveform should be a pure sinusoid with zero
or little harmonic distortion. One way to achieve this is to change the amplitude of the
OP AMP gain with changing signal level: as the output signal increases so Av is decreased
or as the output signal level decreases Av is increased. At all times the circuit parameters
are changed to achieve the condition bAv = 1. The circuit shown in Fig. 7.37 uses two
diodes and a resistor to automatically change the OP AMP closed loop gain with changing
signal level. Fig. 7.38 shows the corresponding waveforms for the Wien bridge circuit with
automatic gain control. Changing the value of resistor R5 causes the amplitude of the
oscillator output voltage to stabilise at a different value; decreasing R5 also decreases vout.
The automatic gain control version of the Wien bridge oscillator also reduces the amount of
harmonic distortion generated by the oscillator. This can be clearly observed in Fig. 7.38.
Changing the oscillator frequency can be accomplished by either changing the capacitor or
resistor values in the feedback network b. To demonstrate how this can be done using Qucs,
consider the circuit shown in Fig. 7.39. In this circuit time controlled switches change the
value of both capacitors as the simulation progresses. The recorded output waveform for
this circuit is shown in Fig. 7.40.

222

C2
C=1 nF C1

C=1nF

R4
R=10k

dc simulation

DC1

R2
R=15.8k R1

R=15.8k

transient
simulation

TR1
Type=lin
Start=0
Stop=10 ms

Equation

Eqn1
y=1
fscan=Time2Freq(vout.Vt,time[700:1000])

R3
R=21k

In-

In+

OP27
ICMZ
P1P2O

SUB2
File=OP27_ICMZP1P2O.sch

vout

Figure 7.34: Classic Wien bridge sinusoidal oscillator.

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-1e11

0

1e11

time

vo
ut

.V
t

0 5e3 1e4 1.5e4 2e4 2.5e4 3e4 3.5e4 4e4 4.5e4 5e4

0

1e9

Frequency Hz

F
re

qu
en

cy
 S

pe
ct

ru
m

Figure 7.35: Simulation waveforms for the circuit shown in Fig. 7.34: OP27 AC macro-
model.

223

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-10

0

10

time

vo
ut

.V
t

0 3e3 6e3 9e3 1.2e4 1.5e4 1.8e4 2.1e4 2.4e4 2.7e4 3e4 3.3e4 3.6e4 3.9e4 4.2e4 4.5e4 4.8e4

0

2

4

6

Frequency

F
re

q-
S

pe
cr

um

Figure 7.36: Simulation waveforms for the circuit shown in Fig. 7.34: OP27 AC + slew
rate + vlimit macromodel.

C2
C=1 nF C1

C=1nF

R4
R=10k

R3
R=21k

dc simulation

DC1 In-

In+
OP27
ICMZ SLWRT
P1P2 VLIM
O VCC

VEE

SUB1

V1
U=15 V

V2
U=15 V

D2

D1

R2
R=15.8k R1

R=15.8k

Equation

Eqn1
fscan=Time2Freq(vout.Vt,time[700:1000])

R5
R=50k

transient
simulation

TR1
Type=lin
Start=0
Stop=10 ms
IntegrationMethod=Trapezoidal

vout

Figure 7.37: Wien bridge oscillator with automatic gain control.

224

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-1

0

1

time

vo
ut

.V
t

0 3e3 6e3 9e3 1.2e4 1.5e4 1.8e4 2.1e4 2.4e4 2.7e4 3e4 3.3e4 3.6e4 3.9e4 4.2e4 4.5e4 4.8e4

0

0.2

0.4

Frequency Hz

F
re

q-
S

pe
ct

ru
m

Figure 7.38: Simulation waveforms for the circuit shown in Fig. 7.37: OP27 AC + slew
rate + vlimit macromodel.

225

R4
R=10k

R3
R=21k

In-

In+
OP27
ICMZ SLWRT
P1P2 VLIM
O VCC

VEE

SUB1

V1
U=15 V

V2
U=15 V

D2

D1R5
R=50k

R2
R=15.8k

S2
time=6 ms

S1
time=7 ms

S3
time=8 ms

R1
R=15.8k

S6

S5

S4

C1
C=0.5nF

C2
C=0.5 nF

C4
C=0.25nF

C6
C=0.25nF

C3
C=0.125nF

C7
C=0.125nF

C5
C=0.0625nF

C8
C=0.0625nF

dc simulation

DC1

transient
simulation

TR1
Type=lin
Start=0
Stop=10 ms
IntegrationMethod=Trapezoidal

vout

Figure 7.39: Wien bridge oscillator with switched capacitor frequency control.

226

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-1

0

1

time

vo
ut

.V
t

0.005 0.0051 0.0052 0.0053 0.0054 0.0055 0.0056 0.0057 0.0058 0.0059

-1

0

1

time

vo
ut

.V
t

0.006 0.0061 0.0062 0.0063 0.0064 0.0065 0.0066 0.0067 0.0068 0.0069

-1

0

1

time

vo
ut

.V
t

0.007 0.0071 0.0072 0.0073 0.0074 0.0075 0.0076 0.0077 0.0078 0.0079

-1

0

1

time

vo
ut

.V
t

0.008 0.0081 0.0082 0.0083 0.0084 0.0085 0.0086 0.0087 0.0088 0.0089

-1

0

1

time

vo
ut

.V
t

Figure 7.40: Simulation waveforms for the circuit shown in Fig. 7.39: OP27 AC + slew
rate + vlimit macromodel.

227

7.11 Update number one: March 2007

In this first update to the operational amplifier tutorial readers will be introduced to Qucs
macromodel model building using schematics and SPICE to Qucs conversion techniques,
secondly to procedures for constructing Qucs operational amplifier libraries, and finally to
two different approaches which allow existing OP AMP models to be extended to include
new amplifier performance parameters, for example power supply rejection. This update is
very much a report on the OP AMP modelling work that has been done by the Qucs devel-
opment team since version 0.0.10 of the package was released in September 2006. Future
Qucs releases will offer many significant improvements in OP AMP modelling particularly
via SPICE to Qucs netlist conversion, subcircuit passing and equation embedding in Qucs
schematics and library development. Following the release of Qucs 0.0.11, and a suitable
period of time for new feature debugging, many of the ideas introduced in this update
will be developed to include OP AMP model building using embedded equations in Qucs
schematics.

7.11.1 Building a library component for the modular OP AMP
macromodel

One of the main strengths of the modular macromodel approach to device modelling is
the fact that the parameters implicit in each section of a macromodel are essentially in-
dependent, allowing subcircuit blocks to be easily connected together to form an overall
device model. Taking this idea further one can construct a complete schematic for an OP
AMP model from the circuitry that represents individual macromodel subcircuit blocks.
The diagram shown in Fig. 7.41 illustrates a typical circuit schematic for a modular OP
AMP macromodel. In this schematic the component values are for the UA741 OP AMP.
By attaching a symbol to the modular macromodel schematic the UA741 modular OP
AMP model is ready for general use and can be placed in an existing12 or a user defined
library. Moreover, by recalculating the component values further library elements can be
constructed and the development of a more extensive Qucs OP AMP library undertaken13.

7.11.2 Changing model parameters: use of the SPICEPP
preprocessor

Changing the component data in Fig. 7.41 allows users to generate modular macromodels
for different operational amplifiers. Although this is a perfectly viable approach to model
generation it is both tedious and error prone. A more straightforward way is to get the

12Qucs 0.0.10, and earlier releases, were distributed with an OP AMP library called OpAmps. However,
this only contained a component level model for the 741 OP AMP. Many of the models discussed in this
text have been added to the Qucs OpAmps library. These should assist readers who wish to experiment
with their own OP AMP circuits.

13One of the important future tasks is the development of component libraries for use with Qucs - this
will take time but should be possible given enough effort by everyone interested in Qucs.

228

Ib1
I=80nA

Ib2
I=80nA

R1
R=1M

R2
R=1M

RDCMZ
R=650M

RCM1
R=1M

CCM1
C=795.8 pFECM1

G=31.623

SRC2
G=1 S

SRC3
G=1 S

RSRT1
R=1

GMSRT1
G=0.01 S

RSCALE1
R=100

VSR1
U=7.26 V

RCM2
R=1

D1
Is=1e-12 A
Bv=14.5
Ibv=20 mA

Cin1
C=1.4 pF SRC1

G=1 S

RSUM1
R=1

RADO
R=200k

GMP1
G=1 S

GMP2
G=1 S

RP2
R=1

CP2
C=53.05nF ROS1

R=75

EOS1
G=1

CP1
C=159.15nF

D3
Is=1e-15 A

D2
Is=1e-15 A

HCL1
G=35

ECL
G=1

RDCCL1
R=100M

VLIM1
U=2 V

VLIM2
U=2 V

P_VCC

P_INN

P_INP

P_VEE

DVLM2
Is=8e-16 A

DVL1
Is=8e-16 A

Voff1
U=0.35m V

Voff2
U=0.35m V

Ioff1
I=10nA

P_OUT

Figure 7.41: Modular OP AMP macromodel in schematic form - this model does not include
signal overloading.

229

computer to do the tedious work involving component value calculation from device data.
With this approach users are only required to enter the device data; as a simple list derived
from manufacturers data sheets. One way to do this is to write a SPICE preprocessor
template14 and let a SPICE preprocessor generate the model for a specific OP AMP. The
PS2SP template file for an OP27 OP AMP modular macromodel is given in Fig. 7.42. The
resulting SPICE file is shown in Fig. 7.43. After construction of the SPICE OP27 netlist
the Qucs OP27 model is generated via the schematic capture SPICE netlist facility.15

7.11.3 The Boyle operational amplifier SPICE model

The Boyle16 operational amplifier model was one of the earliest attempts at construct-
ing an OP AMP macromodel that achieved significantly reduced simulation times, when
compared to those times obtained with discrete transistor level models17, while maintain-
ing acceptable functional properties and simulation accuracy. The Boyle macromodel was
designed to model differential gain versus frequency, DC common-mode gain, device in-
put and output characteristics, slew rate limiting, output voltage swing and short-circuit
limiting. The circuit schematic for the Boyle macromodel of a bipolar OP AMP is illus-
trated in Fig. 7.44. This model consists of three connected stages: the input stage, the
intermediate voltage gain stage and the output stage. Calculation of individual component
values is complex, relying on a set of equations derived from the physical properties of the
semiconductor devices and the structure of the electrical network. These equations are de-
rived in the Boyle paper and summerised in the following list. Starting with IS1 =8.0e-16,
the emitter base leakage current of transistor T1, and by assuming R2 = 100k the model
component values can be calculated using:

1. IS2 = IS1 · exp
(
V OS
V t

) ∼= IS1

[
1 +

V OS

V t

]
,where V t = 26e-3 V.

2. IC1 =
C2SR

+

2
, where SR+ is the positive slew rate.

3. IC2 = IC1

4. IB1 = IB −
IOS
2

and IB2 = IB +
IOS
2

14The use of the SPICE preprocessors SPICEPP and SPICEPRM are described in Qucs tutorial Qucs sim-
ulation of SPICE netlists. Since both SPICEPP and SPICEPRM were first written, Friedrch Schmidt
has developed a PSpice to SPICE3/XSPICE preprocessor which combines, and extends, the features
found in both SPICEPP and SPICEPRM. This preprocessor is called PS2SP. The Perl script version
of PS2SP is licensed under GPL and may be downloaded from http://members.aon.at/fschmid7/.

15See the tutorial Qucs simulation of SPICE netlist for instructions on how this can be done.
16G.R. Boyle, B.M. Cohn, D. Pederson, and J.E. Solomon, Macromodelling of integrated circuit operational

amplifiers, IEEE Journal of Solid State Circuits, vol. SC-9, pp. 353-364, 1974.
17See Fig. 7.3. Tests show that the Boyle macromodel reduces simulation times for common amplifier,

timer and filter circuits by a factor between six and ten.

230

5. B1 =
IC1

IB1

and B2 =
IC2

IB2

6. IEE =

[
B1 + 1

B1

+
B2 + 1

B2

]
IC1

7. RC1 =
1

2πGBPC2

8. RC2 = RC1

9. RE1 =
B1 +B2

2 +B1 +B2

[
RC1− 1

gm1

]
, where gm1 =

IC1

V t
, and RE2 = RE1

10. CEE =
C2

2
· tan

(
4φ π

180

)
, where 4φ = 90o − Φm and Φm is the phase margin.

11. GCM =
1

CMMRRC1

12. GA =
1

RC1

13. GB =
AvOLRC1

R2RO2

14. ISD1 = IX · exp (TMP1)+1e-32, where IX = 2 · IC1 ·R2 ·GB − IS1,

and TMP1 =
−1

RO1
IS1

V t

15. RC =
V t

100 · IX
ln (TEMP2), where TEMP2 =

IX

ISD1

16. V C = abs (V CC)− V OUTP + V t · ln
(
ISCP
IS1

)

17. V E = abs (V EE) + V OUTN + V T · ln
(
ISCN
IS1

)

18. RP =
(V CC − V EE) (V CC − V EE)

PD

Rather than calculate the Boyle macromodel component values by hand using a calculator
it is better to use a PS2SP preprocessor template that does these calculations and also
generates the Boyle SPICE netlist. A template for this task is given in Fig. 7.45. The
parameters at the beginning of the listing are for the UA741 OP AMP. In Fig. 7.45 the
macromodel internal nodes are indicated by numbers and external nodes by descriptive
names. This makes it easier to attach the macromodel interface nodes to a Qucs schematic
symbol. The SPICE netlist shown in Fig. 7.46 was generated by SP2SP.

231

∗ s u b c i r c u i t por t s : in+ in− p out p vcc p vee
. subckt opamp ac in p in n p out p vcc p vee
∗ OP27 OP AMP parameters
. param vo f f = 30 . 0u ib = 15n i o f f = 12n
. param rd = 4meg cd = 1 . 4p cmrrdc = 1 . 778 e6
. param fcmz = 2000 . 0 ao ldc = 1 . 778 e6 gbp = 8meg
. param fp2 = 17meg ps lewr=2 . 8e6 ns lewr=2 . 8e6
. param vccm=15 vpoutm=14 veem=−15
. param vnoutm=−14 idcoutm=32m ro=70 . 0
. param p1={ (100∗ ps lewr)/(2∗3 . 1412∗gbp) −0 . 7}
. param p2={ (100∗ ns lewr)/(2∗3 . 1412∗gbp) −0 . 7}
∗ input s tage
vo f f 1 in n 6 { vo f f /2}
vo f f 2 7 in p { vo f f /2}
ib1 0 6 { ib}
ib2 7 0 { ib}
i o f f 1 7 6 { i o f f /2}
r1 6 8 {rd /2}
r2 7 8 {rd /2}
c in1 6 7 {cd}
∗ common−mode zero s tage
ecm1 12 0 8 0 {1e6/cmrrdc}
rcm1 12 13 1meg
ccm1 12 13 {1/(2∗3 . 1412∗1 e6∗ fcmz)}
rcm2 13 0 1
∗ d i f f e r e n t i a l and common−mode s i g n a l summing s tage
gmsum1 0 14 7 6 1
gmsum2 0 14 13 0 1
rsum1 14 0 1
∗ s lew ra t e s tage
gs rc1 0 15 13 0 1
r s c a l e 1 15 0 100
d s l 15 16 {ds l ewrate}
. model ds l ewrate d(i s=1e−12 bv= { p1+p2 })
vsr1 16 0 {p1}
gmsrt1 0 17 15 0 0 . 01
r s r t 1 17 0 1
∗ vo l tage gain s tage 1
gmp1 0 9 17 0 1
rado 9 0 {ao ldc}
cp1 9 0 {1/(2∗3 . 1412∗gbp)}
∗ vo l tage gain s tage 2
gmp2 0 11 9 0 1
rp2 11 0 1
cp2 11 0 {1/(2∗3 . 1412∗ fp2)}
∗ output s tage
eos1 10 0 11 0 1
ros1 10 50 { ro}
∗output cur rent l im i t e r s tage
rdc l 1 50 0 100meg
dc l1 21 50 dcl im
dc l2 50 21 dcl im
. model dcl im d(i s=1e−15 c j 0=0 . 0)
vc l1 50 p out 0v
hc l1 0 22 vc l1 {0 . 9/ idcoutm}
e c l 1 21 22 50 0 1
∗ vo l tage l im i t i n g s tage
dvl1 p out 30 dv l im i t
. model dv l im i t d(i s=8e−16)
dvl2 40 p out dv l im i t
vl im1 p vcc 30 {vcc−vccm+1}
vlim2 40 p vee {−vee +veem+1}
. ends
. end

Figure 7.42: PS2SP template for the OP27 modular macromodel.

232

∗ s u b c i r c u i t por t s : in+ in− p out p vcc p vee
∗ i n f i l e=op27 . pp date=Tue Feb 13 17 : 32 : 37 2007 Converted with ps2sp . pl V4 . 11
∗ opt ions : −sp3=0 − l t s p i c e=0 −fromsub=0 −f r oml ib=0 −check=0 (t i n y l i n e s=1)
∗ copyr ight 2007 by Fr i ed r i ch Schmidt − terms of Gnu Licence
. subckt opamp ac in p in n p out p vcc p vee
vo f f 1 in n 6 1 . 5e−05
vo f f 2 7 in p 1 . 5e−05
ib1 0 6 1 . 5e−08
ib2 7 0 1 . 5e−08
i o f f 1 7 6 6e−09
r1 6 8 2000000
r2 7 8 2000000
c in1 6 7 1 . 4e−12
ecm1 12 0 8 0 0 . 562429696287964
rcm1 12 13 1meg
ccm1 12 13 7 . 95874188208328 e−11
rcm2 13 0 1
gmsum1 0 14 7 6 1
gmsum2 0 14 13 0 1
rsum1 14 0 1
gs rc1 0 15 13 0 1
r s c a l e 1 15 0 100
d s l 15 16 0
. model ds l ewrate d(i s=1e−12 bv= 9 . 7422386349166)
vsr1 16 0 4 . 8711193174583
gmsrt1 0 17 15 0 0 . 01
r s r t 1 17 0 1
gmp1 0 9 17 0 1
rado 9 0 1778000
cp1 9 0 1 . 98968547052082 e−08
gmp2 0 11 9 0 1
rp2 11 0 1
cp2 11 0 9 . 36322574362739 e−09
eos1 10 0 11 0 1
ros1 10 50 70
rdc l 1 50 0 100meg
dc l1 21 50 dcl im
dc l2 50 21 dcl im
. model dcl im d(i s=1e−15 c j 0=0 . 0)
vc l1 50 p out 0v
hc l1 0 22 vc l1 28 . 125
e c l 1 21 22 50 0 1
dvl1 p out 30 dv l im i t
. model dv l im i t d(i s=8e−16)
dvl2 40 p out dv l im i t
vl im1 p vcc 30 −14
vlim2 40 p vee −14
. ends
. end

Figure 7.43: SPICE netlist for the OP27 modular macromodel.

233

T1 T2

IEECEE REE

RE1 RE2

RC1 RC2

C2

C1

R2

GCM

GA GB

RO2

D1 D2 RO1

GC

D3

D4

RP

P_INN

P_INP

P_VCC

P_VEE

P_OUT

VC

VE
RC

Figure 7.44: Boyle macromodel for a BJT OP AMP

7.11.4 Model accuracy

The modular and Boyle OP AMP macromodels are examples of typical device models in
common use with todays popular circuit simulators. A question which often crops up is
which model is best to use when simulating a particular circuit? This is a complex question
which requires careful consideration. One rule of thumb worth following is always validate
a SPICE/Qucs model before use. Users can then check that a specific model does
simulate the circuit parameters that control the function and accuracy of the circuit being
designed18. One way to check the performance of a given model is to simulate a specific
device parameter. The simulation results can then be compared to manufacturers published
figures and the accuracy of a model easily determined. By way of an example consider
the simulation circuit shown in Fig. 7.47. In this circuit the capacitors and inductors
ensure that the devices under test are in ac open loop mode with stable dc conditions.
Figure 7.48 illustrates the observed simulation gain and phase results for four different OP
AMP models. Except at very high frequencies, which are outside device normal operating
range, good agreement is found between manufacturers data and that recorded by the open
loop voltage gain test for both the modular and Boyle macromodels.

18An interesting series of articles by Ron Mancini, on verification and use of SPICE models in circuit
design can be found in the following editions of EDN magazine:Validate SPICE models before use,
EDN March 31, 2005 p.22; Understanding SPICE models, EDN April 14, p 32; Verify your ac SPICE
model, EDN May 26, 2005; Beyond the SPICE model’s dc and ac performance, EDN June 23 2005,
and Compare SPICE-model performance, EDN August 18, 2005.

234

∗ Boyle macromodel template f o r Qucs .
∗ Design parameters (For UA741)
. param vt=26e−3 $ Thermal vo l tage at room temp .
. param c2=30e−12 $ Compensation capac i tance
. param po s i t i v e s lew ra t e=0 . 625 e6 negat ive s lew ra t e=0 . 50 e6 $ Slew ra t e s
. param i s 1=8 . 0e−16 $ T1 leakage cur rent
. param vos=0 . 7e−3 ib=80n i o s=20n $ Input vo l tage and cur rent parameters
. param va=200 $ Nominal e a r l y vo l tage
. param gbp=1 . 0e6 $ Gain bandwidth product
. param pm=70 $ Excess phase at unity gain .
. param cmrr=31622 . 8 $ Common−mode r e j e c t i o n r a t i o (90 dB)
. param avol=200k $ DC open loop d i f f e r e n t i a l ga in
. param ro2=489 . 2 $ DC output r e s i s t a n c e
. param ro1=76 . 8 $ High frequency AC output r e s i s t a n c e
. param r2=100k
. param vout p=14 . 2 $ Po s i t i v e s a tu r a t i on vo l tage − f o r VCC=15v
. param vout n=−13 . 5 $ Negative s a tu ra t i on vo l tage − f o r VCC=−15v
. param vcc=15 $ Po s i t i v e power supply vo l tage
. param vee=−15 $ Negative power supply vo l tage
. param i s c p=25m $ Short c i r c u i t output cur rent
. param i s c n=25m $ Short c i r c u i t output cur rent
. param pd=59 . 4m $ Typical power d i s s i p a t i o n
∗ Design equat ions
. param i s 2={ i s 1 ∗(1+vos/vt)}
. param i c 1={0 . 5∗ c2∗ p o s i t i v e s lew ra t e } i c 2={ i c 1 }
. param ib1={ ib−0 . 5∗ i o s } ib2={ ib+0 . 5∗ i o s }
. param b1={ i c 1 / ib1} b2={ i c 2 / ib2}
. param i e e={ ((b1+1)/b1+(b2+1)/b2)∗ i c 1 }
. param gm1={ i c 1 /vt} rc1={1/(2∗3 . 1412∗gbp∗ c2)} rc2=rc1
. param re1={ ((b1+b2)/(2+b1+b2))∗ (rc1−1/gm1)} re2=re1
. param ree={va/ i e e } cee={ (2∗ i c 1 / negat ive s lew ra t e)−c2}
. param dphi={90−pm} c1={ (c2 /2)∗ tan (dphi ∗3 . 1412/180)}
. param gcm={1/(cmrr∗ rc1)} ga={1/ rc1} gb={ (avo l ∗ rc1)/ (r2 ∗ ro2)}
. param ix={2∗ i c 1 ∗ r2 ∗gb−i s 1 } tmp1={−1 . 0/(ro1 ∗ i s 1 /vt)} i sd1={ i x ∗exp (tmp1)+1e−32}
. param tmp2={ i x / i sd1 } rc={vt /(100∗ i x)∗ ln (tmp2)}
. param gc={1/ rc}
. param vc={abs (vcc)−vout p+vt∗ ln (i s c p/ i s 1)} ve={abs (vee)+vout n+vt∗ ln (i s c n/ i s 1)}
. param rp={ (vcc−vee)∗ (vcc−vee)/pd}
∗ Nodes : Input n inp n inn n vcc n vee Output n out
Q1 8 n inn 10 qmod1
Q2 9 n inp 11 qmod2
RC1 n vcc 8 { rc1}
RC2 n vcc 9 { rc2}
RE1 1 10 { re1}
RE2 1 11 { re2}
RE 1 0 { r e e}
CE 1 0 { cee}
IEE 1 n vee { i e e }
C1 8 9 {c1}
RP n vcc n vee {rp}
GCM 0 12 1 0 {gcm}
GA 12 0 8 9 {ga}
R2 12 0 { r2}
C2 12 13 30p
GB 13 0 12 0 {gb}
RO2 13 0 { ro2}
RO1 13 n out { ro1}
D1 13 14 dmod1
D2 14 13 dmod1
GC 0 14 n out 0 {gc}
RC 14 0 { rc}
D3 n out 15 DMOD3
D4 16 n out DMOD3
VC n vcc 15 {vc}
VE 16 n vee {ve}
. model dmod1 d(i s={ i sd1 } r s=1)
. model dmod3 d(i s=8e−16 r s=1)
. model qmod1 npn(i s={ i s 1 } BF={b1})
. model qmod2 npn(i s={ i s 2 } BF={b2})
. end

Figure 7.45: PS2SP template for the Boyle macromodel with UA741 parameters listed.

235

∗ boyle macromodel template f o r qucs .
∗ i n f i l e=ua741 boyle . ps2sp date=Tue Feb 6 20 : 58 : 12 2007 Converted with ps2sp . pl V4 . 11
∗ opt ions : −sp3=0 − l t s p i c e=0 −fromsub=0 −f r oml ib=0 −check=0 (t i n y l i n e s=1)
∗ copyr ight 2007 by Fr i ed r i ch Schmidt − terms of Gnu Licence
q1 8 n inn 10 qmod1
q2 9 n inp 11 qmod2
rc1 n vcc 8 5305 . 82792138885
rc2 n vcc 9 5305 . 82792138885
re1 1 10 1820 . 05072213971
re2 1 11 1820 . 05072213971
re 1 0 13192612 . 1372032
ce 1 0 7 . 5e−12
i e e 1 n vee 1 . 516e−05
c1 8 9 5 . 4588124089082 e−12
rp n vcc n vee 15151 . 5151515152
gcm 0 12 1 0 5 . 96000354174836 e−09
ga 12 0 8 9 0 . 000188472
r2 12 0 100000
c2 12 13 30p
gb 13 0 12 0 21 . 6918557701915
ro2 13 0 489 . 2
ro1 13 n out 76 . 8
d1 13 14 dmod1
d2 14 13 dmod1
gc 0 14 n out 0 1621 . 78603105575
rc 14 0 0 . 000616604151750539
d3 n out 15 dmod3
d4 16 n out dmod3
vc n vcc 15 1 . 60789905279489
ve 16 n vee 2 . 30789905279488
. model dmod1 d(i s=1e−32 r s=1)
. model dmod3 d(i s=8e−16 r s=1)
. model qmod1 npn(i s=8e−16 bf=107 . 142857142857)
. model qmod2 npn(i s=8 . 21538461538461 e−16 bf=83 . 3333333333333)
. end

Figure 7.46: SPICE netlist for the Boyle UA741 macromodel.

236

C1
C=1000F

L1
L=1000H

R1
R=0.00001

V2
U=15 V

V3
U=15 V

RL
R=2k

V1
U=1 V

-

+

VCC

VEE

UA741
(MOD)

SUB1

L2
L=1000H

R2
R=0.00001

-

+

UA741(Boyle)

VCC

VEE

SUB2

C2
C=1000F

C3
C=1000F

L3
L=1000H

R3
R=0.00001

L4
L=1000H

R4
R=0.00001

C4
C=1000F

-

+

OP27
(Boyle)

VCC

VEE

SUB6

-

+

OP27
(MOD)

VEE

VCC

SUB5

RL2
R=2k

RL1
R=2k

Equation

Eqn1
gain_mod_27_dB=dB(vout_mod_27.v)
gain_mod_dB=dB(vout_mod.v)
gain_boyle_dB=dB(vout_boyle.v)
gain_boyle_27_dB=dB(vout_boyle_27.v)
phase_boyle_deg=rad2deg(unwrap(angle(vout_boyle.v)))
phase_boyle_27_deg=rad2deg(unwrap(angle(vout_boyle_27.v)))
phase_mod_deg=rad2deg(unwrap(angle(vout_mod.v)))
phase_mod_27_deg=rad2deg(unwrap(angle(vout_mod_27.v)))

dc simulation

DC1

ac simulation

AC1
Type=log
Start=1Hz
Stop=100MHz
Points=200

vout_mod

vout_mod_27

vout_boyle_27

vin

vout_boyle

Figure 7.47: Test circuit for simulating OP AMP model open loop voltage gain.

237

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8

0

100

acfrequency

ga
in

_m
od

_d
B

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-150

-100

-50

0

acfrequency

ph
as

e_
m

od
_d

eg

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-100

0

100

acfrequency

ga
in

_b
oy

le
_d

B

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-200

-100

0

acfrequency

ph
as

e_
bo

yl
e_

de
g

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8

0

100

acfrequency

ga
in

_m
od

_2
7_

dB

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-200

-100

0

acfrequency

ph
as

e_
m

od
_2

7_
de

g

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8

0

100

acfrequency

ga
in

_b
oy

le
_2

7_
dB

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-200

-100

0

acfrequency

ph
as

e_
bo

yl
e_

27
_d

eg

Figure 7.48: Open loop voltage gain simulation waveforms for the modular and Boyle
UA741 and OP27 macromodels.

238

7.11.5 The PSpice modified Boyle model

One of the most widely used OP AMP simulation models is a modified version of the Boyle
macromodel. This was originally developed for use with the PSpice circuit simulator. Many
semiconductor manufacturers provide models for their devices based on the modified Boyle
macromodel19. A typical modified Boyle macromodel SPICE netlist is shown in Fig. 7.49.
The circuit structure and performance are very similar, but significantly different to the
original Boyle model. Some of the common OP AMP parameters NOT modeled are (1)
input offset voltage, (2) temperature coefficient of input offset voltage, (3) input offset
current, (4) equivalent input voltage and noise currents, (5) common-mode input voltage
range, and (6) temperature effect on component stability. Items (2), (4), (5) and (6) are also
not modeled by the standard Boyle macromodel. Although the modified Boyle macromodel
is similar to the original Boyle model it is not possible to use this model as it is defined with
Qucs; due to the fact that SPICE 2G nonlinear controlled sources, egnd and fb, are included
in the SPICE netlist. Controlled source egnd is employed to model the OP AMP reference
voltage as the average of the VCC and VEE power rail voltages rather than the ground
voltage assumed in the original Boyle macromodel20. Current conrolled current source fb
is used to model OP AMP output current limiting. The nonlinear polynomial21 form of
controlled sources were included in the 2G series of SPICE simulators to allow behavioural
models of summers, multipliers, buffers and other important functional components to be
easily constructed. Single and multidimensional polynomial forms of controlled sources are
defined by SPICE 2G. Taking (1) the voltage controlled voltage source and (2) the current
controlled current sources as examples the syntax is as follows:

Ename N(+) N(-) POLY(n) NC1(+) NC1(-) NC2(+) NC2(-)..... P0 P1 P2......,

where n indicates the order of the polynomial with coefficients P0Pn, and NCn(+),
NCn(-) etc are the control node pairs.
This becomes:

• For POLY(1) 22: Ename N(+) N(-) P0 P1 P2.........

• For POLY(2): Ename N(+) N(-) POLY(2) NC1(+) NC1(-) NC2(+) NC(-) P0 P1 P2......

• For POLY(3): Ename N(+) N(-) POLY(3) NC1(+) NC1(-) NC2(+) NC2(-) NC3(+) NC3(-) P0 P1 P2.... ,
and so on.

19See for example the OP AMP section of the Texas Instruments (TI) Web site and the TI Operational
Amplifier Circuits, Linear Circuits, Data Manual, 1990.

20Taking the OP AMP reference voltage to be the average of VCC and VEE allows devices with non-
symmetrical power supply voltages to be simulated.

21The definition of these polynomial functions was changed in the SPICE 3 series simulators to a more
conventional algebraic form when specifying the B type source components. This often gives compati-
bility problems when attempting to simulate SPICE 2 models with circuit simulators developed from
SPICE 3f4 or earlier simulators. Most popular SPICE based circuit simulators now accept both types
of nonlinear syntax.

22 If only one P coefficient is given in the single dimension polynomial case, then SPICE assumes that this
is P1 and that P0 equals zero. Similarly if the POLY keyword is not explicitly stated in a controlled
source definition then it is assumed by SPICE to be POLY(1).

239

Similarly: Fname N(+) N(-) POLY(n) V1 V2 V3 P0 P1 P2, where V1, V2 are independent
voltage sources whose current controls the output. This becomes:

• For POLY(1): Fname N(+) N(-) V1 P0 P1 P2........

• For POLY(2): Fname N(+) N(-) POLY(2) V1 V2 P0 P1 P2.......

• For POLY(3): Fname N(+) N(-) POLY(3) V1 V2 V3 P0 P1 P2 P3......., and so on.

The meaning of the coefficients in the nonlinear controlled source definitions depends on
the dimension of the polynomial. The following examples indicate how SPICE calculates
current or voltage values.

• For POLY(1): The polynomial function fv is calculated using
fv = P0 + (P1 ∗ fa) + (P2 ∗ fa2) + (P3 ∗ fa3) + (P4 ∗ fa4) +,
where fa is either a voltage or current independent variable.

• For POLY(2): The polynomial function fv is calculated using
fv = P0+(P1∗fa)+(P2∗fb)+(P3∗fa2)+(P4∗fa∗fb)+(P5∗fb2)+(P6∗fa3)
+(P7 ∗ fa2 ∗ fb) +, where fa and fb are both either voltage or current inde-
pendent variables.

• For POLY(3): The polynomial function fv is calculated using
fv = P0 + (P1 ∗ fa) + (P2 ∗ fb) + (P3 ∗ fc) + (P4 ∗ fa2) + (P5 ∗ fa ∗ fb)
+(P6 ∗ fa ∗ fc) + (P7 ∗ fb2) + (P8 ∗ fb ∗ fc) + (P9 ∗ fc2) + (P10 ∗ fa3) +(P11 ∗
fa2 ∗ fb) + (P12 ∗ fa2 ∗ fc) + (P13 ∗ fa ∗ fb2) + (P14 ∗ fa ∗ fb ∗ fc) +(P15 ∗ fa ∗
fc2) + (P16 ∗ fb3) + (P17 ∗ fb2 ∗ fc) + (P18 ∗ fb ∗ fc2) +(P19 ∗ fc3)............., where
fa, fb, and fc are all either voltage or current independent variables.

From Fig. 7.49 the controlled generators egnd and fb are:

• egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5

Which is the same as egnd 99 0 poly(2) 3 0 4 0 0 0.5 0.5

By comparison with the SPICE polynomial equations for controlled sources,

V (egnd) =
V (3)

2
+
V (4)

2
implying that the controlled voltage source V (egnd) is

the sum of two linear voltage sources.

• fb 7 99 poly(5) vb vc ve vlp vln 0 10.61E6 -10E6 10E6 10E6 -10E6

By comparison with the SPICE polynomial equations for controlled sources
I(fb) = 10.61e6*I(vb) - 10e6*I(vc) + 10e6*I(ve) + 10e6*I(vlp) -10e6*I(vlp)

implying that the controlled current I(fb) is the sum of five linear controlled current
sources.

240

SPICE sources engd and fb can therefore be replaced in the modified Boyle model by the
following SPICE code23:

* egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5

* Forms voltage source with output

* V=0.5*V(4)+0.5*V(3)

egnd1 999 0 4 0 0.5

egnd2 99 999 3 0 0.5

*

*fb 7 99 poly(5) vb vc ve vlp vln 0 10.61e6 -10e6 10e6 10e6 -10e6

*

* Forms current source with output

* I=10.61e6*i(vb)-10e6*i(vc)+10e6*i(ve)+10e6*i(vlp)-10e6*i(vln)

*

*Sum 5 current sources to give fb.

fb1 7 99 vb 10.61e6

fb2 7 99 vc -10e6

fb3 7 99 ve 10e6

fb4 7 99 vlp 10e6

fb5 7 99 vln -10e6

Modified Boyle macromodels are often generated using the PSpice Parts24 program. Such
models have similar structured SPICE netlists with different component values. However,
changes in technology do result in changes in the input stage that reflect the use of npn,
pnp and JFET input transistors in real OP AMPs. Hence to use manufacturers published
modified Boyle models with Qucs all that is required is the replacement of the SPICE
polynomial controlled sources with linear sources and the correct component values. Again
this is best done using a SPICE preprocessor template. The templates for OP AMPS with
npn and PJF input transistors are shown in Figures 7.50 and 7.51. The SPICE netlists
shown in Figs. 7.52 and 7.53 were generated by the PS2SP preprocessor. For OP AMPS
with pnp input transistors simply change the BJT model reference from npn to pnp and
use the same template.

23It is worth noting that the code for the polynomial form of controlled sources can only be replaced by a
series connection of linear controlled voltage sources or a parallel connection of linear controlled current
sources provided no higher order polynomial coefficients are present in the original SPICE code. Some
SPICE models use these higher order coefficients to generate multiply functions. Such cases cannot be
converted to code which will simulate using Qucs 0.0.10. Sometime in the future this restriction will
be removed when nonlinear voltage and current sources are added to Qucs.

24The Parts modelling program is an integral component in the PSpice circuit simulation software originally
developed by the MicroSim Corporation, 1993, The Design Centre:Parts (Irvine, Calif.). It now forms
part of Cadence Design Systems OrCad suite of CAD software.

241

∗ connect i ons : non−i n v e r t i n g input
∗ | i n v e r t i n g input
∗ | | p o s i t i v e power supply
∗ | | | negat ive power supply
∗ | | | | output
∗ | | | | |
. subckt uA741 1 2 3 4 5
∗

c1 11 12 8 . 661E−12
c2 6 7 30 . 00E−12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly (2) (3 , 0) (4 , 0) 0 . 5 . 5
fb 7 99 poly (5) vb vc ve vlp vln 0 10 . 61E6 −10E6 10E6 10E6 −10E6
ga 6 0 11 12 188 . 5E−6
gcm 0 6 10 99 5 . 961E−9
i e e 10 4 dc 15 . 16E−6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100 . 0E3
rc1 3 11 5 . 305E3
rc2 3 12 5 . 305E3
re1 13 10 1 . 836E3
re2 14 10 1 . 836E3
ree 10 99 13 . 19E6
ro1 8 5 50
ro2 7 99 100
rp 3 4 18 . 16E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40

. model dx D(I s=800 . 0E−18 Rs=1)

. model qx NPN(I s=800 . 0E−18 Bf=93 . 75)

. ends

Figure 7.49: PSpice modified Boyle macromodel for the UA741 OP AMP.

242

∗ Modif ied Boyle OP AMP model template
∗ npn BJT input dev i c e s .
∗
∗UA741C OP AMP parameters , manufacturer Texas Instruments
. param c1=4 . 664p c2=20 . 0p
. param ep1=0 . 5 ep2=0 . 5
. param fp1=10 . 61 e6 fp2=−10e6 fp3=10 e6 fp4=10 e6 fp5=−10e6
. param vc=2 . 6 ve=2 . 6 vlp=25 vln=25
. param ga=137 . 7e−6 gcm=2 . 57e−9
. param i e e=10 . 16e−6 hlim=1k
. param r2=100k
. param rc1=7 . 957k rc2=7 . 957k
. param re1=2 . 74k re2=2 . 74k
. param ree=19 . 69 e6 ro1=150 ro2=150
. param rp=18 . 11k
∗
. subckt ua741 TI P INP P INN P VCC P VEE P OUT
c1 11 12 {c1}
c2 6 7 {c2}
dc P OUT 53 dx
de 54 P OUT dx
dlp 90 91 dx
dln 92 90 dx
∗ egnd 99 0 poly (2) (3 , 0) (4 , 0) 0 0 . 5 0 . 5
∗ Qucs mod i f i ca t i on , Mike Brinson , Feb 2007
egnd1 999 0 P VCC 0 {ep1}
egnd2 99 999 P VEE 0 {ep2}
∗ fb 7 99 poly (5) vb vc ve vlp vln 0 10 . 61 e6 −10e6 10 e6 10 e6 −10e6
∗ Forms cur rent source with output
∗ I=10 . 61 e6∗ i (vb)−10e6∗ i (vc)+10e6∗ i (ve)+10e6∗ i (v lp)−10e6∗ i (v ln)
∗Qucs mod i f i ca t i on , Mike Brinson , Feb 2007 .
∗Sum 5 current sou rc e s to g ive fb .
fb1 7 99 vb { fp1}
fb2 7 99 vc { fp2}
fb3 7 99 ve { fp3}
fb4 7 99 vlp { fp4}
fb5 7 99 vln { fp5}
∗
ga 6 0 11 12 {ga}
gcm 0 6 10 99 {gcm}
i e e 10 P VEE { i e e }
hlim 90 0 vlim {hlim}
q1 11 P INN 13 qx
q2 12 P INP 14 qx
r2 6 9 100k
rc1 P VCC 11 { rc1}
rc2 P VCC 12 { rc2}
re1 13 10 { re1}
re2 14 10 { re2}
r e e 10 99 { r e e}
ro1 8 P OUT { ro1}
ro2 7 99 { ro2}
rp P VCC P VEE {rp}
vb 9 0 dc 0
vc P VCC 53 dc {vc}
ve 54 P VEE dc {ve}
vlim 7 8 dc 0
vlp 91 0 dc {vlp}
vln 0 92 dc {vlp}
. model dx d(i s=800 . 0e−18)
. model qx npn(i s=800 . 0e−18 bf=62 . 5)
. ends
. end

Figure 7.50: Modified Boyle PS2SP netlist for the UA741 OP AMP.

243

∗ Modif ied Boyle OP AMP model template
∗ JFET input dev i c e s .
∗
∗TL081 OP AMP parameters , manufacturer Texas Instruments
. param c1=3 . 498p c2=15 . 0p
. param ep1=0 . 5 ep2=0 . 5
. param fp1=4 . 715 e6 fp2=−5e6 fp3=5e6 fp4=5e6 fp5=−5e6
. param vc=2 . 2 ve=2 . 2 vlp=25 vln=25
. param ga=282 . 8e−6 gcm=8 . 942e−9
. param i s s=195 . 0e−6 hlim=1k
. param r2=100k
. param rd1=3 . 536k rd2=3 . 536k
. param r s s=1 . 026 e6 ro1=150 ro2=150
. param rp=2 . 14k
∗
. subckt ua741 TI P INP P INN P VCC P VEE P OUT
c1 11 12 {c1}
c2 6 7 {c2}
dc P OUT 53 dx
de 54 P OUT dx
dlp 90 91 dx
dln 92 90 dx
∗ egnd 99 0 poly (2) (3 , 0) (4 , 0) 0 0 . 5 0 . 5
∗ Qucs mod i f i ca t i on , Mike Brinson , Feb 2007
egnd1 999 0 P VCC 0 {ep1}
egnd2 99 999 P VEE 0 {ep2}
∗ fb 7 99 poly (5) vb vc ve vlp vln 0 10 . 61 e6 −10e6 10 e6 10 e6 −10e6
∗ Forms cur rent source with output
∗ I=10 . 61 e6∗ i (vb)−10e6∗ i (vc)+10e6∗ i (ve)+10e6∗ i (v lp)−10e6∗ i (v ln)
∗Qucs mod i f i ca t i on , Mike Brinson , Feb 2007 .
∗Sum 5 current sou rc e s to g ive fb .
fb1 7 99 vb { fp1}
fb2 7 99 vc { fp2}
fb3 7 99 ve { fp3}
fb4 7 99 vlp { fp4}
fb5 7 99 vln { fp5}
∗
ga 6 0 11 12 {ga}
gcm 0 6 10 99 {gcm}
i s s P VCC 10 { i s s }
hlim 90 0 vlim {hlim}
j 1 11 P INN 10 jx
j2 12 P INP 10 jx
r2 6 9 100k
rd1 P VEE 11 { rd1}
rd2 P VEE 12 { rd2}
ro1 8 P OUT { ro1}
ro2 7 99 { ro2}
rp P VCC P VEE {rp}
r s s 10 99 { r s s }
vb 9 0 dc 0
vc P VCC 53 dc {vc}
ve 54 P VEE dc {ve}
vlim 7 8 dc 0
vlp 91 0 dc {vlp}
vln 0 92 dc {vlp}
. model dx d(i s=800 . 0e−18)
. model jx p j f (i s=15 . 0e−12 beta=270 . 1e−6 vto=−1)
. ends
. end

Figure 7.51: Modified Boyle PS2SP netlist for the TL081 OP AMP.

244

∗ modi f i ed boyle op amp model template
∗ i n f i l e=Mod boyle template npn . pp date=Thu Feb 8 23 : 54 : 59 2007 Converted with ps2sp . pl V4 . 11
∗ opt ions : −sp3=1 − l t s p i c e=0 −fromsub=0 −f r oml ib=0 −check=0 (t i n y l i n e s=1)
∗ copyr ight 2007 by Fr i ed r i ch Schmidt − terms of Gnu Licence
. subckt ua741 t i p inp p inn p vcc p vee p out
c1 11 12 4 . 664e−12
c2 6 7 2e−11
dc p out 53 dx
de 54 p out dx
dlp 90 91 dx
dln 92 90 dx
egnd1 999 0 p vcc 0 0 . 5
egnd2 99 999 p vee 0 0 . 5
fb1 7 99 vb 9 . 42507068803016 e−08
fb2 7 99 vc −1e−07
fb3 7 99 ve 1e−07
fb4 7 99 vlp 1e−07
fb5 7 99 vln −1e−07
ga 6 0 11 12 0 . 0001377
gcm 0 6 10 99 2 . 57e−09
i e e 10 p vee 1 . 016e−05
hlim 90 0 vlim 0 . 001
q1 11 p inn 13 qx
q2 12 p inp 14 qx
r2 6 9 100k
rc1 p vcc 11 7957
rc2 p vcc 12 7957
re1 13 10 2740
re2 14 10 2740
ree 10 99 19690000
ro1 8 p out 150
ro2 7 99 150
rp p vcc p vee 18110
vb 9 0 0
vc p vcc 53 2 . 6
ve 54 p vee 2 . 6
vlim 7 8 0
vlp 91 0 25
vln 0 92 25
. model dx d(i s=800 . 0e−18)
. model qx npn(i s=800 . 0e−18 bf=62 . 5)
. ends
. end

Figure 7.52: Modified Boyle SPICE netlist for the TI UA741 OP AMP.

245

∗ modi f i ed boyle op amp model template
∗ i n f i l e=TL081 TI . pp date=Sun Feb 11 16 : 04 : 22 2007 Converted with ps2sp . pl V4 . 11
∗ opt ions : −sp3=0 − l t s p i c e=0 −fromsub=0 −f r oml ib=0 −check=0 (t i n y l i n e s=1)
∗ copyr ight 2007 by Fr i ed r i ch Schmidt − terms of Gnu Licence
. subckt ua741 t i p inp p inn p vcc p vee p out t imes
c1 11 12 3 . 498e−12
c2 6 7 1 . 5e−11
dc p out 53 dx
de 54 p out dx
dlp 90 91 dx
dln 92 90 dx
egnd1 999 0 p vcc 0 0 . 5
egnd2 99 999 p vee 0 0 . 5
fb1 7 99 vb 4715000
fb2 7 99 vc −5000000
fb3 7 99 ve 5000000
fb4 7 99 vlp 5000000
fb5 7 99 vln −5000000
ga 6 0 11 12 0 . 0002828
gcm 0 6 10 99 8 . 942e−09
i s s p vcc 10 0 . 000195
hlim 90 0 vlim 1000
j1 11 p inn 10 jx
j2 12 p inp 10 jx
r2 6 9 100k
rd1 p vee 11 3536
rd2 p vee 12 3536
ro1 8 p out 150
ro2 7 99 150
rp p vcc p vee 2140
r s s 10 99 1026000
vb 9 0 dc 0
vc p vcc 53 dc 2 . 2
ve 54 p vee dc 2 . 2
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
. model dx d(i s=800 . 0e−18)
. model jx p j f (i s=15 . 0e−12 beta=270 . 1e−6 vto=−1)
. ends
. end

Figure 7.53: Modified Boyle SPICE netlist for the TI TL081 OP AMP.

246

7.12 Constructing Qucs OPAMP libraries

Qucs release 0.0.10 includes a facility which allows users to build their own component
libraries. This facility can be used to construct any library which contains device models
formed using the standard schematic entry route provided the individual components that
make up a model do not contain components that require file netlists. Qucs, for example,
converts SPICE netlists to Qucs formated netlists when a simulation is performed but does
not retain the converted netlists. Hence, to add OP AMP macromodels that are based on
SPICE netlist to a Qucs library a slightly modified procedure is required that involves users
copying the converted SPICE netlist into a Qucs library. One way for generating SPICE
netlist based OP AMP models is as follows25:

1. Construct a Qucs OP AMP model using the procedure described on page 3 of the
Qucs Simulation of SPICE Netlists tutorial.

2. Add this model to a user defined library using the Qucs Create Library facility (short
cut Ctrl+Shift+L).

3. Place a copy of the OP AMP model on a drawing sheet and undertake a DC analysis.
NOTE: drag and drop the model symbol of the device you are simulating from your
current work project and NOT from the newly created Qucs library.

4. Copy the section of the Qucs netlist that has been converted from the model’s SPICE
netlist and paste this into the newly created library model. The converted SPICE
netlist can be displayed by pressing key F6. User generated library files are held in
directory user_lib.26

To demonstrate the procedure consider the following example based on the UA741 Boyle
model:
Steps 1 and 2 result in the following entry in a user created library:

<Component ua741 (boyle)>
<Descr ipt ion>

UA741 Boyle macromodel
</Descr ipt ion>
<Model>

. Def : Lib OPAMP ua741 boyle net0 net1 net2 net3 net4
Sub :X1 net0 net1 net2 net3 net4 gnd Type=”ua741 boyle c i r ”
. Def :End
</Model>
<Symbol>
<. ID −20 74 SUB>
<Line −20 60 0 −125 #00007 f 2 1>
<Line −20 −65 100 65 #00007 f 2 1>
<Line −20 60 100 −60 #00007 f 2 1>
<Line −35 −35 15 0 #00007 f 2 1>
<Line −35 40 15 0 #00007 f 2 1>

25The procedure presented here must be considered a work around and may change as Qucs develops.
26The location of the user created libraries will differ from system to system depending where .qucs is

installed.

247

<Line 80 0 15 0 #00007 f 2 1>
<. PortSym −35 −35 1 0>
<. PortSym −35 40 2 0>
<. PortSym 95 0 3 180>
<Line 60 50 0 −40 #00007 f 2 1>
<Line 60 −15 0 −40 #00007 f 2 1>
<Text −15 −55 30 #000000 0 ”−”>
<Text −15 30 20 #000000 0 ”+”>
<Text −15 −5 12 #000000 0 ”UA741(Boyle) ”>
<. PortSym 60 −55 4 180>
<. PortSym 60 50 5 180>
<Text 65 −30 12 #000000 0 ”VCC”>
<Text 65 20 12 #000000 0 ”VEE”>

</Symbol>
</Component>

Note that the model requires a subcircuit of type ua741_boyle_cir which is not included
when the library is created by Qucs. After completing the cut and paste operation described
in steps 3 and 4 above the resulting library entry becomes the Qucs netlist shown next.

<Component ua741 (boyle)>
<Descr ipt ion>

UA741 Boyle macromodel
</Descr ipt ion>
<Model>

. Def : Lib OPAMP ua741 boyle net0 net1 net2 net3 net4
Sub :X1 net0 net1 net2 net3 net4 gnd Type=”ua741 boyle c i r ”
. Def :End
. Def : ua741 boyle c i r netN INN netN INP netN OUT netN VCC netN VEE r e f

Vdc :VE net16 netN VEE U=”2 . 3079 ”
Vdc :VC netN VCC net15 U=”1 . 6079 ”
Diode :D4 netN OUT net16 I s=”8e−16” Rs=”1 ” N=”1 ” M=”0 . 5 ” Cj0=”1e−14” Vj=”0 . 7 ”
Diode :D3 net15 netN OUT I s=”8e−16” Rs=”1 ” N=”1 ” M=”0 . 5 ” Cj0=”1e−14” Vj=”0 . 7 ”
R:RC net14 r e f R=”0 . 000616604 ”
VCCS:GC netN OUT r e f net14 r e f G=”1621 . 79 ”
Diode :D2 net13 net14 I s=”1e−32” Rs=”1 ” N=”1 ” M=”0 . 5 ” Cj0=”1e−14” Vj=”0 . 7 ”
Diode :D1 net14 net13 I s=”1e−32” Rs=”1 ” N=”1 ” M=”0 . 5 ” Cj0=”1e−14” Vj=”0 . 7 ”
R:RO1 net13 netN OUT R=”76 . 8 ”
R:RO2 net13 r e f R=”489 . 2 ”
VCCS:GB net12 net13 r e f r e f G=”21 . 6919 ”
C:C2 net12 net13 C=”30p”
R:R2 net12 r e f R=”100000 ”
VCCS:GA net8 net12 r e f net9 G=”0 . 000188472 ”
VCCS:GCM net1 r e f net12 r e f G=”5 . 96e−09”
R:RP netN VCC netN VEE R=”15151 . 5 ”
C:C1 net8 net9 C=”5 . 45881e−12”
Idc : IEE netN VEE net1 I=”1 . 516e−05”
C:CE net1 r e f C=”0 ”
R:RE net1 r e f R=”1 . 31926 e+07”
R:RE2 net1 net11 R=”1820 . 05 ”
R:RE1 net1 net10 R=”1820 . 05 ”
R:RC2 netN VCC net9 R=”5305 . 83 ”
R:RC1 netN VCC net8 R=”5305 . 83 ”
BJT :Q2 netN INP net9 net11 r e f Type=”npn” I s=”8 . 21538e−16” Bf=”83 . 3333 ” Nf=”1 ” Nr=”1 ” I k f=”0 ”
Ikr=”0 ” Vaf=”0 ” Var=”0 ” I s e=”0 ” Ne=”1 . 5 ” I s c=”0 ” Nc=”2 ” Br=”1 ” Rbm=”0 ” Irb=”0 ” Cje=”0 ” Vje=”0 . 75 ”
Mje=”0 . 33 ” Cjc=”0 ” Vjc=”0 . 75 ” Mjc=”0 . 33 ” Xcjc=”1 ” Cjs=”0 ” Vjs=”0 . 75 ” Mjs=”0 ” Fc=”0 . 5 ” Vtf=”0 ”
Tf=”0 ” Xtf=”0 ” I t f=”0 ” Tr=”0 ”
BJT :Q1 netN INN net8 net10 r e f Type=”npn” I s=”8e−16” Bf=”107 . 143 ” Nf=”1 ”
Nr=”1 ” I k f=”0 ” Ikr=”0 ” Vaf=”0 ” Var=”0 ” I s e=”0 ” Ne=”1 . 5 ” I s c=”0 ” Nc=”2 ” Br=”1 ”
Rbm=”0 ” I rb=”0 ” Cje=”0 ” Vje=”0 . 75 ” Mje=”0 . 33 ” Cjc=”0 ” Vjc=”0 . 75 ” Mjc=”0 . 33 ”
Xcjc=”1 ” Cjs=”0 ” Vjs=”0 . 75 ” Mjs=”0 ” Fc=”0 . 5 ” Vtf=”0 ” Tf=”0 ” Xtf=”0 ” I t f=”0 ” Tr=”0 ”

. Def :End
</Model>
<Symbol>

248

<. ID −20 74 SUB>
<Line −20 60 0 −125 #00007 f 2 1>
<Line −20 −65 100 65 #00007 f 2 1>
<Line −20 60 100 −60 #00007 f 2 1>
<Line −35 −35 15 0 #00007 f 2 1>
<Line −35 40 15 0 #00007 f 2 1>
<Line 80 0 15 0 #00007 f 2 1>
<. PortSym −35 −35 1 0>
<. PortSym −35 40 2 0>
<. PortSym 95 0 3 180>
<Line 60 50 0 −40 #00007 f 2 1>
<Line 60 −15 0 −40 #00007 f 2 1>
<Text −15 −55 30 #000000 0 ”−”>
<Text −15 30 20 #000000 0 ”+”>
<Text −15 −5 12 #000000 0 ”UA741(Boyle) ”>
<. PortSym 60 −55 4 180>
<. PortSym 60 50 5 180>
<Text 65 −30 12 #000000 0 ”VCC”>
<Text 65 20 12 #000000 0 ”VEE”>

</Symbol>
</Component>

7.13 Extending existing OP AMP models

The modular, Boyle and modified Boyle OP AMP models are three popular macromodels
selected from a large number of different models that are in common use today. Most device
manufacturers provide similar macromodels, or extended versions which more accurately
model the performance of specific devices. Indeed, a growing trend has developed which
mixes Boyle type models with modular structures27. Often, in practical design projects
specific OP AMP properties must be simulated which are not modelled with an available
OP AMP model. Two approaches can be used to overcome such deficiencies; firstly, a
macromodel itself can be modified so that it models the required additional attributes, or
secondly external components can be added which again extend model performance.
One important OP AMP parameter that the standard and modified Boyle models do not
model is the frequency dependence of amplifier common-mode gain. Only the dc value
of the CMRR is modelled. Such frequency dependency can be added by a simple modi-
fication28, requiring one extra node, that simulates ac CMRR and gives close agreement
between macromodel performance and data sheet specifications. Components CEE, REE
and GCM, see Fig. 7.44, are replaced by the network shown in Fig. 7.54. Data sheets
for the UA741 show the CMRR falling above a break frequency of about 200 Hz, due to
the zero generated by CEE causing the common-mode gain to increase. This effect can
be simulated in the Boyle macromodel by the addition of one extra node and two extra
resistors and changes to REE and controlled source GCM as in Fig. 7.44. In this modified
network, the common-mode voltage is detected at the junction of RE4 and CEE, introduc-
ing a zero into the response and attenuating the signal. The frequency of the zero is set by

27See for example: Ray Kendall, User-friendly model simplifies SPICE OP-AMP simulation, EDN maga-
zine, January 4, 2007, pp. 63-69.

28This section is based on unpublished work by David Faulkner and Mike Brinson., Department of Com-
puting, Communications Technology and Mathematical Sciences, London Metropolitan University, UK.

249

RE3
R=106.1M

RE4
R=10

CEE
C=7.5p

RE5
R=15.06M

GCM
G=6.32e-2

Figure 7.54: AC CMRR modification for Boyle macromodel

1
2∗π∗CEE∗RE3

. The new value of CEE must have the same value as the original CEE value29

if the same slew-rate is to be maintained, so for a 200 Hz cut-off this gives RE3=106.1M.
RE4 is arbitrarily fixed at 10 Ω, which introduces another pole at about 2 GHz, well outside
the frequency of interest. The value of REE is increased to RE5 (15.06meg), so that RE5
in parallel with RE3 equals the original value of REE. GCM is also increased by the factor
RE3
RE4

maintaining the correct low frequency common-mode gain. Differential frequency re-
sponse and slew rate are unchanged by these modifications. The simulation results for the
common-mode test circuit shown in Fig. 7.20 are given in Fig. 7.55. These indicate close
agreement between the modular and ac Boyle macromodels.

Modifying the circuit of an existing OP AMP macromodel is at best a complex process or at
worst impossible because the model details are either not known or well understood. One
way to add features to an existing model is to add an external circuit to a model’s terminals.
This circuit acts as a signal processing element adding additional capabilities to the original
macromodel. One circuit feature not modelled by any of the macromodels introduced in
earlier sections is power supply rejection. By adding a simple passive electrical network to
the terminals of a macromodel it is possible to model OP AMP power supply rejection.
Power supply rejection(PSRR) is a measure of the ability of an OP AMP to reject unwanted
signals that enter at the power terminals. It is defined as the ratio of differential-mode gain
to power supply injected signal gain. The simulation of OP AMP power supply rejection30

29In the Boyle macromodel the value of CEE is set by the OP AMP slew rate. Adjusting both the positive
and negative slew rates changes the value of CEE. For the UA741 these have been set at 0.625e6 and
0.500e6 respectively. This gives CEE=7.5pF which is commonly quoted for the UA741 value of CEE,
see Andrei Vladimirescu, The SPICE Book,1994, John Wiley and Sons, Inc., ISBN 0-471-60926-9, pp
228-239. Also note care must be taken when choosing values for the two slew rates because negative
values of CEE can occur which are physically not realisable.

30M. E. Brinson and D. J. Faulkner, Measurement and modelling of operational amplifier power supply
rejection, Int. J. Electronics, 1995, vol. 78, NO. 4, 667-678.

250

1 10 100 1e3
0

5e-5

1e-4

1.5e-4

2e-4

acfrequency

vo
ut

_b
oy

le
_a

c.
v

1 10 100 1e3
0

5e-5

1e-4

1.5e-4

2e-4

acfrequency

vo
ut

_m
od

.v

1 10 100 1e3
0

5e-5

1e-4

1.5e-4

2e-4

acfrequency

vo
ut

_b
oy

le
_o

rig
.v

Figure 7.55: AC common-mode simulation results for (1) Boyle macromodel, (2) ac Boyle
macromodel and (3) the modular macromodel

251

-

+

UA741(Boyle)

VCC

VEE

SUB1

V3
U=1 V

V1
U=15 V

V2
U=15 V

ac simulation

AC1
Type=log
Start=1 Hz
Stop=10 MHz
Points=500

dc simulation

DC1

R1
R=100k

R4
R=100k

R2
R=10

R3
R=10

vout

Figure 7.56: Test circuit for the simulation of PSRR(f) voltage transfer function character-
istic

is possible using the test circuit given in Fig. 7.56, where

Vout(f)± = AD(f) [V + − V −] + ACM(f)

[
V + + V −

2

]
+ APS(f)±VS,

where AD(f) is the OP AMP differential-mode gain, ACM(f) is the OP AMP common-
mode gain, and APS(f)± is the OP AMP power supply injected gain. The superscript ±
indicates that the ac signal source is connected to either the OP AMP positive or negative
power supply terminals but not simultaneously to both. Assuming that the OP AMP
power supply injected gain has a single dominant zero at f±PSZ1, analysis yields

VOUT (f)±

VS
=

1

αPSRR(0)±

[
1 + j

(
f

f±PSZ1

)]
[
1 + j

(
f

αGBP

)]

Where APS(f)± = APS(0)±

[
1 + j

(
f

f±PSZ1

)]
[
1 + j

(
f

fp1

)] , α =
R2

R1 +R2
= 1e− 4

PSRR(f)± =
PSRR(0)±[

1 + j

(
f

f±PSZ1

)] , PSRR(0)+ =
AD(0)

APS(0)+
and PSRR(0)− =

AD(0)

APS(0)−
.

Typical values for the UA741 are PSRR(0)+ = 110000, PSRR(0)− = 170000, f+
PSZ1 =

685Hz, f−PSZ1 = 6.2Hz. The considerable difference in the dominant zero frequencies of
the injected power supply gains is normally due to the fact that the OP AMP circuits are
not symmetric when viewed from the power supply signal injection terminals. By adding

252

external components to an OP AMP macromodel power supply rejection effects can be
easily simulated. The schematic shown in Fig. 7.57 shows the TI UA741 model with RC
networks connected between the power supply terminals and earth. The voltage controlled
voltage sources probe the voltages at the center nodes of the additional RC networks.
These networks generate the power supply injected signals at dc. They also generate the
dominant zero in the power supply rejection characteristic.

The values for the passive components can be calculated using:

RA =
106

PSRR(0)+
, CA =

1

2 · 106 ·π · f+
PSZ1

, RB =
106

PSRR(0)−
, CA =

1

2 · 106 ·π · f−PSZ1

Which gives, for the example UA741 device data, RA = 9Ω, CA = 232pF , RB = 5.9Ω
and CB = 25.7pF . Simulation waveforms for the small signal frequency response of the
test circuit are shown in Fig. 7.58. In the case of the modular UA741 model the simulation
signal plot clearly demonstrates the fact that the model does not correctly represent the
effects due to power supply injected signals.

253

V1
U=15 V

V2
U=15 V

R2
R=10

R3
R=10

R1
R=100k

EN1
G=0.5

EP2
G=0.5

EN2
G=0.5

UA741(TI)

-

+

VCC

VEE

SUB4

CA
C=232p

CB
C=25.7nF

R6
R=1M

EP1
G=0.5

R11
R=100k

R12
R=100k

R9
R=10

R10
R=10

RA
R=9

-

+

VCC

VEE

UA741
(MOD)

SUB5

dc simulation

DC1

ac simulation

AC1
Type=log
Start=1 Hz
Stop=10 kHz
Points=400

Equation

Eqn1
PSRR_P=dB(p1/(vout_TI.v*p2*alpha))
fpz1=685
alpha=1e-4
gbp=1e-6
p1=mag(1+j*acfrequency/fpz1)
p2=mag(1+j*acfrequency/alpha*gbp)

R4
R=100k

VS
U=1 V

R5
R=1M

RB
R=5.9

vout_TI

Vout_mod

Figure 7.57: Test circuit showing OP AMP with external power supply rejection modelling
network

254

1 10 100 1e3 1e4
0.01

0.015

0.02

0.025

0.03

acfrequency

vo
ut

_T
I.v

1 10 100 1e3 1e4

100

105

110

acfrequency

P
S

R
R

_P

1 10 100 1e3 1e4

0

1e-21

2e-21

3e-21

acfrequency

V
ou

t_
m

od
.v

Figure 7.58: Simulation waveforms for the circuit illustrated in Fig. 7.57

255

7.14 End note

While writing this tutorial I have tried to demonstrate how practical models of operational
amplifiers can be constructed using basic electronic concepts and the range of Qucs built-in
components. The modular OP AMP macromodel was deliberately chosen as the foundation
for the tutorial for two reasons; firstly Qucs is mature enough to easily simulate such
models, and secondly the parameters which determine the operation of the macromodel
can be be calculated directly from information provided on device data sheets. Recent
modelling development by the Qucs team has concentrated on improving the SPICE to
Qucs conversion facilities. This work has had a direct impact on Qucs ability to import
and simulate manufacturers OP AMP models. The tutorial upgrade explains how SPICE
Boyle type OP AMP macromodels can be converted to work with Qucs. The Qucs OP
AMP library (OpAmps) has been extended to include models for a range of popular 8 pin
DIL devices. If you require a model with a specific specification that is not modelled by
an available macromodel then adding extra functionality may be the only way forward.
Two procedures for extending models are outlined in the tutorial upgrade. Much work still
remains to be done before Qucs can simulate a wide range of the macromodels published
by device manufacturers. With the recent addition of subcircuit/component equations to
Qucs it is now possible to write generalised macromodel macros for OP AMPs. However,
before this can be done time is required to fully test the features that Stefan and Michael
have recently added to Qucs release 0.0.11. This topic and the modelling of other OP AMP
properties such as noise will be the subject of a further OP AMP tutorial update sometime
in the future. My thanks to David Faulkner for all his help and support during the period
we were working on a number of the concepts that form part of the basis of this tutorial.
Once again a special thanks to Michael Margraf and Stefan Jahn for all their help and
encouragement over the period that I have been writing this tutorial and testing the many
examples it includes.

256

8 Modelling the 555 Timer

8.1 Introduction

The 555 timer was designed by Hans R. Camenzind in 19701 and first produced by Signetics
during the period 1971-19722. The device was originally called ”The IC time machine” and
given the part number SE555/NE555. Over the last 30 plus years more than ten different
semiconductor chip production companies have made 555 parts, making it one of the most
popular ICs of all time3. Today it is still used in a wide range of circuit applications.

The 555 timer is one of the first examples of a mixed mode IC circuit that includes both
analogue and digital components. The primary purpose of the 555 timer is the generation
of accurately timed single pulse or oscillatory pulse waveforms. By adding one or two
external resistors and one capacitor the device can function as a monostable or astable
pulse oscillator.

The 555 timer is a difficult device to simulate. During circuit operation it switches rapidly
between two very different DC states4. Such rapid changes can be the cause of simulator
DC convergence and transient analysis errors. Most of the popular simulators include some
form of 555 timer model, either built-in or as a subcircuit, which functions to some degree.
These models usually include a number of p-n junctions and non-linear controlled sources,
making simulation times longer than those obtained with simpler models. At the heart of
the 555 timer are two comparators and a set-reset flip flop. A block diagram of the main
functional elements that comprise the 555 timer is illustrated in Fig. 8.1.

The current Qucs release does not include a model for the 555 timer. The purpose of the
work reported in this tutorial note has been to develop a 555 timer model from scratch
which simulates efficiently, and is based only on the circuit components implemented in
Qucs 0.0.10. Moreover, while developing the Qucs 555 model every attempt has been
made to reduce the number of p-n junctions to a minimum, yielding both model simplicity

1See ”The 555 Timer IC. An interview with Hans Camenzind - The designer of the most successful
integrated circuit ever developed”, http://semiconductormuseum.com/Transistors/LectureHall/
Camenzind/

2Now part of the Philips organisation.
3Recent manufacturing volumes indicate that the 555 timer is as popular as ever, with for example,

Samsung (Korea) producing over one billion devices in 2003; see Wikipedia entry at http://en.
wikipedia.org/

4Typically between ground and a voltage close to power rail VCC.

257

http://semiconductormuseum.com/Transistors/LectureHall/Camenzind/
http://semiconductormuseum.com/Transistors/LectureHall/Camenzind/
http://en.wikipedia.org/
http://en.wikipedia.org/

and reduced circuit simulation times. The approach adopted is centred on established
macromodelling techniques where signals at the timer device pins accurately model real
device signals but internal macromodel signals often bare no relation to those found in an
actual device. Internally, the macromodel simply processes input signal information and
outputs signals, in the correct format, to the device output pins. In no way is an attempt
made to simulate the actual 555 timer circuitry.

P_GND1

P_OUTPUT1

R1
R=5k

P_RESET1

R2
R=5k

R3
R=5k

P_DISCHARGE1

P_VCC1

Discharge
Switch

SUB1

THRESH
+

-
SUB3

TRIG
+

-
SUB4

Reset

Thresh

Trig

Q

QB

DIGITAL
LOGIC

SUB5

P_TRIGGER1

P_CONTROL1

P_THRESH1

RES

OUT

TRIG

VCCGND

555

DIS

TRESH

CON

SUB6
File=timer_555.sch

+

AMP

_

SUB2

Figure 8.1: 555 Timer functional block diagram.

8.2 The Qucs 555 timer model

Fig. 8.1 illustrates the new Qucs 555 timer model. In this model each of the major func-
tional blocks have been separated into macromodel subcircuits, grouping similar types of
component together. Essentially, the model only includes standard Qucs components which
all work together to produce the correct output signals through careful selection of thresh-
old parameters, voltage limits, logic levels and rise and fall times. These notes concentrate
on explaining the structure and parameters of the macromodel subcircuits that form the

258

555 timer model, rather than describing the function of the device5. The 555 timer is an 8
pin device with:

• Pin 1 Ground [GND] - Most negative supply connected to the device, normally this
is common ground (0V).

• Pin 2 Trigger [TRIG] - Input pin to the lower comparator. Used to set the RS latch.

• Pin 3 Output [OUT] - The 555 timer output signal pin.

• Pin 4 Reset [RES] - Used to reset the RS latch.

• Pin 5 Control [CON] - Direct access point to the (2/3)VCC divider node. Used to
set the reference voltage for the upper comparator.

• Pin 6 Threshold [THRESH] - Input pin to upper comparator. Used to reset the RS
latch.

• Pin 7 Discharge [DIS] - Collector output of an npn BJT switch. Used to discharge
the external timing capacitor.

• Pin 8 VCC [VCC] - Most positive supply connected to device, normally this is 5V,
10V or 15V.

8.2.1 The trigger comparator macromodel

The trigger comparator input pins are connected between the (1/3)VCC divider node and
device package pin 2 (TRIG). Trigger input signals dropping below the (1/3)VCC divider
node voltage cause the trigger output voltage to switch, setting the RS latch in the digital
logic subcircuit. This action also causes the 555 timer output signal to go high. The trigger
input is level sensitive. Retriggering will occur if the trigger pulse is held low longer than
the 555 timer output pulse width. The trigger comparator circuitry also has a storage time
of several microseconds, limiting the minimum monostable output pulse to around 10µS.
A DC current, popularly referred to as the trigger current, flows from device pin 2 (TRIG)
into the external circuit. This has a typical value of 500 nA, setting the upper limit of
resistance that can be connected from pin 2 to ground6. The circuit diagram of the trigger
comparator macromodel is shown in Fig. 8.2. The differential input signal is sensed by
operational amplifier OP1. This has it’s gain set to 1e6, giving a differential input signal
resolution of 1µV. OP1 output voltages are limited to ±1V. Note the upper +1V signal
level corresponds to a logic ’1’ signal. Finally, the trigger comparator output voltage rise
and fall times are set by time constant R1 ∗ C1. This network also adds a time delay to
the comparator macromodel.

5A good tutorial guide to the operation of the 555 timer can be found at http://www.uoguelph.ca/
~antoon/gadgets/555/555.html

6At VCC = 5V this resistance is roughly 3.3MΩ.

259

http://www.uoguelph.ca/~antoon/gadgets/555/555.html
http://www.uoguelph.ca/~antoon/gadgets/555/555.html

R1
R=1k

comp_vout1

C1
C=1 nFPcomp_vn1

OP1
G=1e6
Umax=1 V

I1
I=500 nA

Pcomp_vp1

TRIG
+

-
SUB1
File=timer_trig.sch

Figure 8.2: Trigger comparator macromodel.

8.2.2 The threshold comparator macromodel

The threshold comparator macromodel is shown in Fig. 8.3. It is very similar to the
trigger comparator macromodel; one noteable difference is the size and direction of pin 6
(THRES) threshold DC current which is typically 100nA and flows into pin 6 from the
external circuitry7. The threshold comparator is used to reset the RS latch in the 555
timer digital logic block, causing the 555 timer output to go low. Resetting occurs when
the signal applied to external pin 6 (THRES) is driven from below to above the (2/3)VCC
divider node voltage. Again the threshold input is level sensitive.

PinP1
Num=1

PinN1
Num=2

R1
R=1k

POUT1
Num=3

OP1
G=1e6
Umax=1 V

C1
C=1 nF

I1
I=0.1 uA

THRESH
+

-
SUB1
File=timer_thresh.sch

Figure 8.3: Threshold comparator macromodel.

7The threshold DC current sets the upper limit to the value of the external resistor that can be connected
between pin 6 and the VCC supply - for VCC = 5V this is approximately 16MΩ, with VCC = 15 V
this rises to roughly 20MΩ.

260

Set (S) Reset (R) Q (P-Q1) QB (P-QB1) Notes
1 0 1 0 Set state
0 0 1 0
0 1 0 1 Reset state
0 0 0 1
1 1 0 0 Undefined

Table 8.1: Truth table for an SR latch constructed using NOR gates.

8.2.3 The digital logic macromodel

The digital logic macromodel consists of an SR latch with additional combinational gates at
the input of the model, see Fig. 8.4. The truth table for the SR latch is listed in Table 8.1.
All gates in the macromodel have logic ’1’ set at 1V and logic ’0’ set at 0V. RC timing
networks have been added to the output of each gate, ensuring that the gates have a finite
rise and fall times rather than the Qucs default value of zero seconds8. Gate input signals
with values less than the gate threshold voltage (0.5V) are considered to be a logic ’0’
signal. A logic ’0’ signal on 555 timer pin 4 (RES) also resets the SR latch causing the
output signal, pin 3 (OUT), to move to a low state. The reset signal is an override signal
in that it forces the timer output to a low state regardless of the signals on other timer
input pins. Reset has a delay time of roughly 0.5µS, making the minimum reset pulse
width of approximately 0.5µS. The reset signal is inverted then ORed with the threshold
comparator output signal.

8In mixed mode circuit simulation transient analysis problems can occur when devices change state in
zero seconds, see later notes for comments on this topic.

261

1

Y1

P_QB1

R1
R=1k R2

R=1k

R3
R=1k

R4
R=1k

R5
R=1k

1

Y2

1

Y3

1

Y4

1

Y5

C1
C=0.5nF C2

C=0.5nF

C4
C=0.09nF

P_reset1

P_tresh1

P_trig1

P_Q1

C3
C=1nF

C5
C=0.05nF

Reset

Thresh

Trig

Q

QB

DIGITAL
LOGIC

SUB1
File=timer_digital_comb.sch

Figure 8.4: Digital logic macromodel.

8.2.4 The 555 timer output amplifier macromodel

Illustrated in Fig. 8.5 is the macromodel for the timer output amplifier. This is a simple
model constructed from a voltage gain block plus a resistor to represent the 555 timer
output resistance. The voltage gain block has it’s value set to 3.5 in Fig. 8.5. This is the
value needed to scale the logic ’1’ signal voltage to the required external voltage at timer
output pin 3 (OUT). This value is only correct for power supply voltage VCC set to 5V,
and must be changed for other voltages9.

9At this time Qucs does not allow parameters to be passed to subcircuits, making it difficult to write
generalised macromodels. Adding parameter passing to subcircuits and the calculation of component
values using equations is on the to-do list. Suggested values for the amplifier gain are: (1) VCC = 5V,
G = 3.5, (2) VCC = 10V, G = 8.5V and (3) VCC = 15V, G = 13.5. These gain values correct for the
voltage drop in the 555 timer totem-pole output stage.

262

R1
R=7

P_vout1Pamp_P1

Pamp_N1

+

AMP

_

SUB1
File=timer_amp.sch

SRC1
G=3.5
T=0

Figure 8.5: Output amplifier macromodel.

8.2.5 The discharge switch macromodel

The discharge switch macromodel is shown in Fig. 8.6. Like the actual 555 timer the
macromodel discharge switch is based on an npn transistor. A logic ’1’ signal applied to
terminal pin_control_in1 turns the npn transistor on causing the path from the collector
(555 timer pin DIS) to ground to become low resistance. It is through this branch that
the timer external capacitor is discharged. The reverse characteristic is observed when the
input control voltage is logic ’0’. In this case the collector to ground branch has a very
high resistance. Resistor R1 is included in the macromodel to limit the npn base current
when the BJT is turned on. Similarly, resistor R2 has been added to the model to limit
the external capacitor discharge current10.

10Normally the external timing capacitor is discharged through a resistor in series with the collector to
ground path. However, if this series resistor is very small, or indeed does not exist, it is theoretically
possible for the discharge current to become very large, which in turn leads to DC convergence errors
or very long transient simulation times.

263

R1
R=10K

P_control_in1

P_GND1

P_Discharge1

T1
Type=npn
Is=1e-16
Nf=1
Vaf=0
Bf=100

R2
R=200

Discharge
Switch

SUB1
File=timer_Discharge.sch

Figure 8.6: The discharge switch macromodel.

8.3 Published 555 timer test circuits

The majority of manufacturers outline in their 555 timer specification sheets a range of
fundamental circuit applications11. A number of these circuits are introduced as a series
of simulation test cases. The conditions chosen for the simulation tests are as follows:

• Integration method Gear, order 6 (this method works well with circuits that contain
time constants that have widely different values)12.

• Input driver signals have a finite rise and fall time, usually in nano seconds (problems
can occur when driver signals have either zero or very small rise and fall times - often
a simulator will reduce the transient analysis step size in an attempt to reduce errors
which in turn can significantly increase simulation run times).

• Transient simulation parameter MinStep is set to one hundredth, or less, of the
smallest rise or fall time in the circuit (this is a good rule of thumb, giving reason-
able simulation times and accuracy, normally without DC convergence or transient
analysis time step problems).

8.3.1 The 555 timer monostable pulse generator

Figure 8.7 shows the basic 555 timer monostable pulse generator circuit. The output pulse
width is given by the equation T = 1.1 ∗R5 ∗C1; when R5 = 9.1k and C1 = 0.01µF, T =
1ms. Figure 8.8 illustrates the simulation waveforms for the monostable oscillator.

11See for example the ”Applications Information” section of the National Semiconductor LM555 Timer
data sheet, July 2006, www.national.com.

12One of the simulation tests also presents results using the standard trapezoidal second order integration
method.

264

C1
C=0.01 uF

V4
U1=5 V
U2=0V
T1=0.1ms
T2=0.15ms

V1
U=5 V

R5
R=9.1k

RES

OUT

TRIG

VCCGND

555

DIS

TRESH

CON

SUB1

V5
U1=5 V
U2=0 V
T1=0.3ms
T2=0.35 ms
Tr=5 ns
Tf=5 ns C2

C=0.01uF

transient
simulation

TR1
Type=lin
Start=0
Stop=0.6ms
IntegrationMethod=Gear
Order=6

vtrig

vdis

reset

vout

Figure 8.7: The basic 555 timer monostable pulse generator.

265

0 5e-5 1e-4 1.5e-4 2e-4 2.5e-4 3e-4 3.5e-4 4e-4 4.5e-4 5e-4 5.5e-4 6e-4

0

5

time

re
se

t.V
t

0 5e-5 1e-4 1.5e-4 2e-4 2.5e-4 3e-4 3.5e-4 4e-4 4.5e-4 5e-4 5.5e-4 6e-4

0

2

4

time

vo
ut

.V
t

0 5e-5 1e-4 1.5e-4 2e-4 2.5e-4 3e-4 3.5e-4 4e-4 4.5e-4 5e-4 5.5e-4 6e-4

0

5

time

vt
rig

.V
t

0 5e-5 1e-4 1.5e-4 2e-4 2.5e-4 3e-4 3.5e-4 4e-4 4.5e-4 5e-4 5.5e-4 6e-4

0

5

time

vd
is

.V
t

Figure 8.8: Simulation waveforms for the basic monostable pulse generator.

266

8.3.2 The 555 timer astable pulse oscillator

Figure 8.9 shows the basic 555 timer astable pulse generator circuit. The charging time
for capacitor C1 is given by tc = 0.693(R5 + R6)C1 seconds, and the discharge time by
td = 0.693(R6)C1 seconds. Hence, the period and frequency of oscillation are:

T = tc+ td = 0.693(R5 + 2R6)C1 seconds, and f =
1.44

(R5 + 2R6)C1
Hz.

The duty cycle for the timer output waveform is also given byD =
R6

R5 + 2R6
.

Figure 8.10 illustrates the simulation waveforms for the astable oscillator. When resistor
R6 is shunted by a diode, capacitor C1 charges via resistor R5 and discharges via resistor
R6. On setting R5 = R6 a 50 percent duty cycle results13, see Figures 8.11 and 8.12.

V1
U=5 V

transient
simulation

TR1
Type=lin
Start=0
Stop=0.3ms
Points=1000
IntegrationMethod=Gear
Order=6

R5
R=3.9k

R6
R=3k

C1
C=0.01 uF

V4
U1=5 V
U2=0V
T1=0
T2=0.02ms

RES

OUT

TRIG

VCCGND

555

DIS

TRESH

CON

SUB1
File=timer_555.sch

C2
C=0.01uF

vtrig

vout

vdis

reset

Figure 8.9: The basic 555 timer astable pulse generator.

13The value of R6 needs to be trimmed to set the duty cycle to exactly 50 percent.

267

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4 2.2e-4 2.4e-4 2.6e-4 2.8e-4 3e-4

0

5

time

re
se

t.V
t

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4 2.2e-4 2.4e-4 2.6e-4 2.8e-4 3e-4

0

2

4

time

vt
rig

.V
t

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4 2.2e-4 2.4e-4 2.6e-4 2.8e-4 3e-4

0

5

time

vo
ut

.V
t

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4 2.2e-4 2.4e-4 2.6e-4 2.8e-4 3e-4

0

5

time

vd
is

.V
t

Figure 8.10: Simulation waveforms for the basic astable pulse generator.

V1
U=5 V

C1
C=0.01 uF

V4
U1=5 V
U2=0V
T1=0
T2=0.02ms

RES

OUT

TRIG

VCCGND

555

DIS

TRESH

CON

SUB1
File=timer_555.sch

C2
C=0.01uF

D1

R5
R=3k

R6
R=3.6k transient

simulation

TR1
Type=lin
Start=0
Stop=0.3ms
Points=4000
IntegrationMethod=Gear
Order=6

vtrig

vout

vdis

reset

Figure 8.11: 555 timer astable pulse generator with 50 percent duty cycle.

268

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4 2.2e-4 2.4e-4 2.6e-4 2.8e-4 3e-4

0

5

time

re
se

t.V
t

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4 2.2e-4 2.4e-4 2.6e-4 2.8e-4 3e-4

0

5

time

vt
rig

.V
t

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4 2.2e-4 2.4e-4 2.6e-4 2.8e-4 3e-4

0

5

time

vo
ut

.V
t

0 2e-5 4e-5 6e-5 8e-5 1e-4 1.2e-4 1.4e-4 1.6e-4 1.8e-4 2e-4 2.2e-4 2.4e-4 2.6e-4 2.8e-4 3e-4

0

5

time

vd
is

.V
t

Figure 8.12: Simulation waveforms for 50 percent duty cycle astable pulse generator.

8.3.3 Pulse width modulation

Triggering the 555 timer in monostable mode with a continuous sequence of pulses allows
the output pulse width to be modulated by changing the amplitude of a signal applied to the
control input pin 5 (CON). An example pulse width modulator circuit is given in Fig. 8.13.
In this circuit components C2, R6 and D1 convert the 555 trigger signal into a falling edge
triggering signal. This can be seen in Fig. 8.14 which illustrates the trigger, discharge and
resulting output waveform. The 555 timer control pin is driven from a voltage pulse source.
The specification of the control waveform has been chosen to generate a triangular shaped
signal so that the modulation of the pulse width can be clearly seen as the control signal
amplitude changes.

269

V1
U=5 V

R5
R=20k

C1
C=0.01 uF

R6
R=4.7k

C2
C=0.01uF

D1

V8
U1=1 V
U2=5 V
T1=0
T2=20ms
Tr=10 ms
Tf=10 ms

V7
U=5 V
TH=0.75 ms
TL=0.5 ms
Tr=20 ns
Tf=20 ns

V4
U1=5 V
U2=0V
T1=0.2ms
T2=0.5ms
Tr=10 ns
Tf=10 ns

transient
simulation

TR1
Type=lin
Start=0
Stop=20ms
IntegrationMethod=Gear
Order=6

RES

OUT

TRIG

VCCGND

555

DIS

TRESH

CON

SUB1
File=timer_555.sch

vtrig

vcon

vsig

vdisreset

vout

Figure 8.13: Pulse width modulator 555 timer circuit.

270

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0

5

time

vo
ut

.V
t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0

10

time

vt
rig

.V
t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

5

time

re
se

t.V
t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0

5

time

vs
ig

.V
t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0

5

time

vd
is

.V
t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

5

time

vc
on

.V
t

Figure 8.14: Simulation waveforms for pulse width modulator.

271

8.3.4 Pulse position modulation

A pulse position modulator can be constructed from the astable waveform generator given
in Fig. 8.9. A modulating signal is applied to the control input pin 5 (CON); see Fig. 8.15.
This signal causes the pulse position to vary with the amplitude of the applied modulating
signal. A typical set of simulation waveforms for this circuit are shown in Fig. 8.16. This is
a very difficult circuit to simulate. It is one case where the trapezoidal integration method
works successfully whereas the 6th order Gear integration method appears to fail14. Note
that the trapezoidal results were obtained using 30000 points, Initial step = 0.001 nS,
MinStep = 1e-16, MaxIter = 5000, abstol = 10uA and vntol = 10uV.

V1
U=5 V

R5
R=3.9k

R6
R=3k

C1
C=0.01 uF

V4
U1=5 V
U2=0V
T1=0
T2=0.02ms

RES

OUT

TRIG

VCCGND

555

DIS

TRESH

CON

SUB1
File=timer_555.sch

V5
U1=5V
U2=4 V
T1=0
T2=10 ms
Tr=5 ms
Tf=5 ms

transient
simulation

TR1
Type=lin
Start=0
Stop=10ms
Points=30000
IntegrationMethod=Trapezoidal
Order=2

vtrig

vout

vdis

vconreset

Figure 8.15: Pulse position modulator 555 timer circuit.

14The transient simulation never finishes and can only be terminated by clicking the simulation abort
button.

272

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

5

time

re
se

t.V
t

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

5

time

vt
rig

.V
t

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

5

time

vd
is

.V
t

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

5

time

vo
ut

.V
t

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

4

5

time

vc
on

.V
t

Figure 8.16: Simulation waveforms for pulse position modulator obtained using trapezoidal
integration.

8.4 Multiple 555 timer simulation examples

Having established in the last section that the new Qucs 555 timer model can simulate the
standard application circuits listed in a typical device data sheet, this part of the tutorial
introduces two further, more complex, examples that demonstrate how the 555 timer is
used in practice.

8.4.1 Sequential pulse train generation

A very practical application of the 555 timer is the generation of timing pulses for control
purposes. The circuit illustrated in Fig. 8.17 shows a set of monostable pulse generators
connected in series and parallel. After circuit reset the falling edge of input pulse vin
triggers the start of pulse sequence generation. The time duration of each monostable

273

pulse is set by external capacitors C1 to C415. The specification of the monostable pulse
generator subcircuit is given in Fig. 8.18. The sequential pulse generator is a complex
circuit with:

60 R instances, 40 C instances, 4 VCVS instances, 1 Vdc instances,

8 Idc instances, 2 Vpulse instances, 8 OpAmp instances, 4 Diode instances,

4 BJT instances, 8 Inv instances, 8 NOR instances and 4 OR instances.

V2
U1=5 V
U2=0 V
T1=0.2ms
T2=0.5ms ms
Tr=10 ns
Tf=10 ns

C1
C=0.01uF

C2
C=0.02uF

C3
C=0.05uF

V3
U1=0 V
U2=5V
T1=1ms
T2=1.3 ms
Tr=10 ns
Tf=10 ns

V1
U=5 V

C4
C=0.1uF

VCC

IN OUT

GND

RES CAP

SUB2

VCC

IN OUT

GND

RES CAP

SUB3

VCC

IN OUT

GND

RES CAP

SUB1

VCC

IN OUT

GND

RES CAP

SUB4

transient
simulation

TR1
Type=lin
Start=0
Stop=5 ms
IntegrationMethod=Gear
Order=6
MinStep=1e-15

vres

vin vout2 vout3
vout1

vout4

Figure 8.17: Sequential pulse generator circuit.

15The pulse duration times set by C1 to C4, in Fig. 8.17, have simply been chosen for demonstration
purposes and do not represent any particular control timing sequence.

274

R5
R=20k

R6
R=4.7k

C2
C=0.01uF

P_VCC

P_IN

P_GND

P_RES

P_OUT

C3
C=0.01uF

D1

P_CAP

RES

OUT

TRIG

VCCGND

555

DIS

TRESH

CON

SUB1

VCC

IN OUT

GND

RES CAP

SUB2
File=555_timer_mono.sch

Figure 8.18: Monostable pulse generator subcircuit.

275

The large number of components, and indeed the complexity of the circuit, tend to make
the simulation time of the pulse train generator circuit much greater than typical times
recorded when simulating single 555 timer circuits. Also, circuit DC convergence and
transient analysis time step errors can be a problem, due to switching discontinuities,
making careful selection of the non-linear diode parameters and the transient analysis
conditions essential. In Fig. 8.18 a diode is used to clamp the 555 timer trigger input at
five volts when the signal attempts to rise above 5 volts. The default Qucs diode parameters
are similar to those specified by SPICE16. By default the diode emission constant is set
to 1 and the diode series resistance to zero ohms. Neither of these values are particularly
representative for silicon diodes. For silicon devices, rather than germanium diodes, n needs
to be between roughly 1.5 and 2. Similarly, all diodes have some series resistance, often in
the range 0.1 to 10 ohms depending on the power rating of the diode. To aid simulation
these parameters have been set to n = 2 and Rs = 10Ω. Figure. 8.19 illustrates a typical
set of signal waveforms obtained from the simulation of the sequential pulse generator: the
simulation conditions employed to generate these results are; Integration method = Gear,
Order = 6, initialStep = 1 ns, MinStep = 1e-15, reltol = 0.001, abstol = 10µA, vntol =
10µV, Solver = CroutLU and initialDC = yes.

16The default values were set in an early version of SPICE, probably version 1, and appear to have not
been changed as the simulator was developed.

276

0 5e-4 1e-3 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

0

5

time

vr
es

.V
t

0 5e-4 1e-3 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

0

5

time

vi
n.

V
t

0 5e-4 1e-3 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

0

5

time

vo
ut

1.
V

t

0 5e-4 1e-3 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

0

5

time

vo
ut

2.
V

t

0 5e-4 1e-3 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

0

5

time

vo
ut

3.
V

t

0 5e-4 1e-3 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

0

5

time

vo
ut

4.
V

t

Figure 8.19: Simulation waveforms for the monostable pulse generator circuit.

277

8.4.2 Frequency divider circuit

A common requirement in both digital and mixed mode circuit design is frequency division,
where a high frequency pulse train, often derived from a crystal controlled clock, is divided
down to a much lower frequency17. The classical way of dividing such signals is to use a
chain of flip-flops each connected as a divide by two element. The 555 timer can also be
used for pulse train frequency division18. The schematic shown in Fig. 8.20 shows a basic
monostable mode 555 circuit with a train of pulses applied to the 555 trigger input pin 2
(TRIG). In an earlier section of these notes it was explained that the 555 trigger comparator
input was signal level sensitive and retriggering takes place if the duration of the low signal
section of the trigger waveform is greater than the monostable pulse duration. In Fig. 8.20
the monostable pulse length is 0.22ms and rectangular voltage generator parameter TL
is 0.5ms which causes retriggering to occur. The effects of retriggering can be seen in
Fig. 8.21. Frequency division employing 555 timers is based on the monostable circuit
shown in Fig. 8.20 and hence circuit designers must make sure that retriggering does not
take place. Illustrated in Fig. 8.22 is a two stage frequency division circuit where each
stage divides the input pulse train by five giving an overall division ratio of twenty five.
The output waveforms for this circuit are shown in Fig. 8.23. When designing 555 timer
frequency divider circuits good performance can be achieved if the period of the 555 timer
is set at (N-0.5) times the period of the input pulse train19, where N is the division ratio
and is in the range 2 ≤ N ≤ 10.

V1
U=5 V

R5
R=20k

C1
C=0.01 uF

V7
U=5 V
TH=0.75 ms
TL=0.5 ms
Tr=20 ns
Tf=20 ns

transient
simulation

TR1
Type=lin
Start=0
Stop=10ms
IntegrationMethod=Gear
Order=6

V4
U1=5 V
U2=0V
T1=0
T2=0.2ms
Tr=10 ns
Tf=10 ns

RES

OUT

TRIG

VCCGND

555

DIS

TRESH

CON

SUB1
File=timer_555.sch

vtrig1

reset

vout1

Figure 8.20: A monostable mode 555 timer circuit with a pulse train applied to the trigger
input.

17Often the resulting frequency is in the region 1 to 5 Hz and is used to flash an LED, or some other
optical actuator, on/off.

18555 timers are normally more efficient than flip-flops in this application because single devices can have
divisors greater than two.

19E. A Parr, IC 555 Projects, Bernard Babani (publishing) Ltd, 1981, p. 109.

278

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

5

time

re
se

t.V
t

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

5

time

vt
rig

1.
V

t

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

2

4

time

vo
ut

1.
V

t

Figure 8.21: Simulation waveforms for the circuit given in Fig. 8.20: these show 555 retrig-
gering.

279

V1
U=5 V

R5
R=20k

V7
U=5 V
TH=0.2 ms
TL=0.1 ms
Tr=20 ns
Tf=20 ns

V4
U1=5 V
U2=0V
T1=0
T2=0.2ms
Tr=10 ns
Tf=10 ns

C1
C=0.0525 uF

transient
simulation

TR1
Type=lin
Start=0
Stop=10ms
IntegrationMethod=Gear
Order=6

R6
R=20k

C2
C=0.26 uF

RES

OUT

TRIG

VCCGND

555

DIS

TRESH

CON

SUB1

RES

OUT

TRIG

VCCGND

555

DIS

TRESH

CON

SUB2

vtrig1

vout1

reset

vout2

Figure 8.22: A two stage 555 timer frequency division circuit.

280

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

5

time

re
se

t.V
t

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

5

time

vt
rig

1.
V

t

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

2

4

time

vo
ut

1.
V

t

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

2

4

time

vo
ut

2.
V

t

Figure 8.23: Simulation waveforms for the circuit given in Fig. 8.22.

8.5 End note

Developing a simulation model for the 555 timer is an interesting challenge. This tutorial
note attempts to describe the principles and macromodelling technology needed for such a
task. It also demonstrates how much Qucs has matured as a universal simulator. The new
Qucs 555 timer model is very much a first attempt on my part at building a functional
model of this complex device. Much more work needs to be done in the future to improve
the 555 timer model. Low power 555 timer models are also needed for these popular vari-
ants. Longer term a universal parameterised subcircuit model for the 555 timer should
become possible once passing parameters to Qucs subcircuits and calculation of compo-
nent values using equations are implemented. A special thanks to Stefan Jahn for all his
encouragement and the many modifications he made to Qucs, which either corrected bugs
or added functionality, during the period I have been working on this topic.

281

9 Qucs Simulation of SPICE Netlists

9.1 Introduction

During the 1960’s and 70’s, the academic community worked tirelessly to develop computer
simulation programs that could act as aids in the process of circuit design. One of the best
known of these programs is SPICE1. First released in 1972 by the University of California
at Berkeley, SPICE has become an industrial standard circuit simulator. Qucs is a modern
circuit simulation program which attempts to bring together a range of established and
emerging circuit simulation technologies to form a ”Quite Universal Circuit Simulator”. Al-
though not yet finished, a substantial part of the central core of the package is functioning,
allowing it to be used as a simulation engine for the analysis and design of real circuits.
Many of the basic circuit components and simulation domains found in SPICE are also
available in Qucs. Over the last three decades the SPICE simulation circuit netlist lan-
guage has become a standard for describing, interchanging and publishing semiconductor
device models and circuit data. Today, most semiconductor device manufacturers provide
SPICE models or subcircuit netlists for their discreet components and integrated circuits.
One area where Qucs and SPICE differ significantly is in their circuit file netlist formats
which are very different2. Qucs cannot directly simulate standard SPICE circuit netlists
but requires them to be converted to their Qucs equivalent prior to simulation. The pur-
pose of this tutorial note is to introduce readers to a number of techniques that allow
SPICE netlists to be simulated by Qucs, secondly to indicate the limitations of the current
SPICE to Qucs netlist conversion process, and finally to present a preview of how Qucs is
likely develop in the future in the area of SPICE netlist compatibility.

9.2 The basic SPICE netlist format

SPICE simulation input data are text files which describe circuit structure, component data
and requested simulation tasks for the circuit who’s performance is being simulated. Such
text files form the fundamental input data to the SPICE simulation engine, and normally
include:

1The origins and background to the development of the SPICE simulator are described by Ronald A.
Rohrer in Circuit Simulation - the early years, illuminating SPICE’s strengths, uncovering weaknesses,
and projecting its future, IEEE Circuits and Devices, 1992, pp 32-37.

2The Qucs netlist grammar is defined in appendix A1, of the Qucs Technical Papers.

282

• A title statement

• Circuit node names

• Circuit element values

• Voltage and current source descriptions

• Analysis command statements

• Output data statements

• Other command statements

In SPICE 23circuit node names (nets) are identified by integers numbered from 0 to 9999.
SPICE 34 allows a mixture of letters and numbers for node names. All circuit nodes must
have a DC path to ground. Ground node is always node 0 and is considered global. Circuit
element values are expressed as integers or real numbers in scientific notation, for example
5, 0.5e1 5.0, or in engineering notation using suffixes. The available SPICE suffixes are f =
1e-15 (femto), p = 1e-12 (pico), n = 1e-9 (nano), u = 1e-6 (micro), mil = 25e-6, m = 1e-3
(milli), k = 1e3 (kilo), meg = 1e6 (mega), g = 1e9 (giga) and t = 1e12 (tera). Component
unit abbreviations are allowed in circuit value descriptions. However, these must not be
separated from their associated values by spaces. Commonly used unit abbreviations are
V = Volt, A = Amps. Hz = Hertz, ohm = Ohm(Ω), H = Henry, F = Farad and deg =
Degree. SPICE input data files have the following format:

1. Title

2. * starts a comment line

3. Circuit description

4. Simulation directives

5. Data output directives

6. .end

3A guide to SPICE 2 features and simulation data format is given in SPICE Version 2G User’s Guide,
A Vladimirescu, Kaihe Zhang, A.R. Newton, D. O. Pederson and A. Sangiovanni-Vincentelli, August
1981, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,
Ca., 94720, US.

4See SPICE 3 Version 3F User’s Manual, B. Johnson, T. Quarles,A.R. Newton, D. O. Pederson and A.
Sangiovanni-Vincentelli, October 1992, Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, Ca., 94720, US.

283

A typical SPICE input data file for a discreet component circuit is shown in Fig. 9.1. In
this netlist all nodes are shown numbered, following the SPICE 2 node naming conven-
tion. Also the power supply, AC input signal generator and output load are not included.
Essentially, the netlist shown in Fig. 9.1 represents the amplifier without any external
components connected to it. Although Qucs cannot directly simulate SPICE netlists the
software does contain a SPICE to Qucs netlist conversion program called QUCSCONV.
This routine takes as input a SPICE netlist file and outputs an equivalent Qucs formatted
netlist file. The Qucs netlist file can be read and simulated by the Qucs simulation engine.
To make the process transparent, and indeed straightforward for users, the conversion stage
in simulating SPICE netlist files5 has been automated via the Qucs GUI simulate command
(F2 key). SPICE netlist files can be linked to a Qucs SPICE netlist schematic symbol.6

These in turn can be connected, on a schematic, to any other appropriate Qucs component
symbol or user defined symbol. Figure 9.2 shows the resulting schematic for the two stage
BJT circuit. In this diagram the external voltage sources and amplifier load have been
added together with the usual Qucs icons for DC and AC simulation of the circuit. During
simulation Qucs treats the SPICE netlist component as a subcircuit7 and generates the
appropriate Qucs netlist code. For example, the netlist shown in Fig. 9.3 illustrates the
Qucs style netlist code for the two stage BJT amplifier. Simulation of the two stage BJT
amplifier gives the output waveforms displayed in Fig. 9.4.

5For convenience SPICE netlist files are often denoted with the extention cir and stored in a Qucs project
under the other category.

6The schematic symbol SPICE netlist can be found in the file components section of the components
icon lists on the left hand side of the GUI. Its connection pin list may be setup and edited via the Edit
SPICE component properties dialogue.

7Hence the need to separate the external voltage sources and amplifier load from the main amplifier
circuit.

284

∗ A two−s tage BJT amp l i f i e r .
∗
∗ Input node 2 , output node 9
∗ Power supply Vcc connected to node 10
∗
c1 2 3 10 uf
r1 3 10 200k
r2 3 0 50k
r5 10 4 12k
q1 4 3 5 qmod
r6 5 0 3 .6 k
c2 4 6 10 uf
c4 5 0 15 uf
r3 10 6 120k
r4 6 0 30k
r7 10 7 6 .8 k
q2 7 6 8 qmod
r8 8 0 3 .6 k
c5 8 0 25 uf
c3 7 9 10 uf
∗
. model qmod npn (i s=2e−16 bf=50 br=1 rb=5 rc=1 re=0
+ c j e =0.4 pf v j e =0.8 me=0.4 c j c =0.5 pf v j c =0.8 cc s=1pf va=100)
∗
. end

Figure 9.1: SPICE netlist for a simple two stage BJT amplifier.

spice

2 9

10

Ref

X1
File=stoq_nl1.cir

V1
U=1m V

V2
U=15 V

RL
R=10k Ohm

dc simulation

DC1

ac simulation

AC1
Type=log
Start=10 Hz
Stop=100 MHz
Points=200

Equation

Eqn1
Phase=phase(vout.v)
gain=dB(vout.v/vin.v)

vin

vout

Figure 9.2: Qucs schematic for the two stage amplifier represented by the SPICE netlist
shown in Fig. 9.1.

285

. Def : s t o q n l 1 c i r net2 net9 net10 r e f
C:C3 net7 net9 C=”10uF”
C:C5 net8 r e f C=”25uF”
R:R8 net8 r e f R=”3.6k”
BJT:Q2 net6 net7 net8 r e f Type=”npn” I s =”2e−16” Bf=”50” Br=”1”

Rb=”5” Rc=”1” Re=”0” Cje =”0.4pF”Vje =”0.8” Mje=”0.4” Cjc =”0.5pF”
Vjc =”0.8” Cjs=”1pF” Vaf=”100” Nf=”1” Nr=”1” I k f =”0” Ikr =”0” Var=”0”
I s e =”0” Ne=”1.5” I s c =”0” Nc=”2” Rbm=”0” Irb =”0” Mjc=”0.33” Xcjc=”1”
Vjs =”0.75” Mjs=”0” Fc=”0.5” Vtf=”0” Tf=”0” Xtf=”0” I t f =”0” Tr=”0”

R:R7 net10 net7 R=”6.8k”
R:R4 net6 r e f R=”30k”
R:R3 net10 net6 R=”120k”
C:C4 net5 r e f C=”15uF”
C:C2 net4 net6 C=”10uF”
R:R6 net5 r e f R=”3.6k”
BJT:Q1 net3 net4 net5 r e f Type=”npn” I s =”2e−16” Bf=”50” Br=”1”

Rb=”5” Rc=”1” Re=”0” Cje =”0.4pF”Vje =”0.8” Mje=”0.4” Cjc =”0.5pF”
Vjc =”0.8” Cjs=”1pF” Vaf=”100” Nf=”1” Nr=”1” I k f =”0” Ikr =”0” Var=”0”
I s e =”0” Ne=”1.5” I s c =”0” Nc=”2” Rbm=”0” Irb =”0” Mjc=”0.33” Xcjc=”1”
Vjs =”0.75” Mjs=”0” Fc=”0.5” Vtf=”0” Tf=”0” Xtf=”0” I t f =”0” Tr=”0”

R:R5 net10 net4 R=”12k”
R:R2 net3 r e f R=”50k”
R:R1 net3 net10 R=”200k”
C:C1 net2 net3 C=”10uF”

. Def : End

Figure 9.3: Qucs format netlist for the two stage BJT amplifier: NOTE -In this listing the
entries for Q1 and Q2 have been edited so that they fit on the text page.

286

10 100 1e3 1e4 1e5 1e6 1e7 1e8

40

60

acfrequency

ga
in

10 100 1e3 1e4 1e5 1e6 1e7 1e8

0

200

acfrequency

P
ha

se

10 100 1e3 1e4 1e5 1e6 1e7 1e8

0

2

4

acfrequency

vo
ut

.v

Figure 9.4: Simulation waveforms for the two stage amplifier.

287

9.3 Defining symbols for Qucs SPICE netlist components

Qucs automatically generates the symbol for a SPICE netlist component and does not
allow users to edit the resulting symbol. One of the disadvantage of this feature is that the
placement of the symbol input and output pins may be in a position which is contrary to
accepted use or signal flow direction. To overcome this limitation a user defined symbol may
be constructed where the SPICE netlist component is embedded within the new symbol.
Figure 9.5 illustrates such a symbol for the two stage BJT amplifier and the resulting Qucs
netlist for the new symbol is shown in Fig. 9.6. From Fig. 9.6 we observe that embedding
a SPICE netlist symbol, within a user defined symbol, introduces an additional subcircuit
call in the resulting Qucs netlist; this is probably a small price to pay for the convenience
that a user defined symbol brings to the overall simulation process.

spice

2 9

10

Ref

X1
File=stoq_nl1.cir

P_IN1

P_OUT1

P_VCC1

VCC

SUB1

Figure 9.5: User defined symbol for the two stage BJT amplifier.

288

. Def : s toq f i g5 amp net0 net1 net2
Sub :X1 net0 net1 net2 gnd Type=”s t o q n l 1 c i r ”
. Def : End

. Def : s t o q n l 1 c i r net2 net9 net10 r e f
C:C3 net7 net9 C=”10uF”
C:C5 net8 r e f C=”25uF”
R:R8 net8 r e f R=”3.6k”
BJT:Q2 net6 net7 net8 r e f Type=”npn” I s =”2e−16” Bf=”50” Br=”1”

Rb=”5” Rc=”1” Re=”0” Cje =”0.4pF”Vje =”0.8” Mje=”0.4” Cjc =”0.5pF”
Vjc =”0.8” Cjs=”1pF” Vaf=”100” Nf=”1” Nr=”1” I k f =”0” Ikr =”0” Var=”0”
I s e =”0” Ne=”1.5” I s c =”0” Nc=”2” Rbm=”0” Irb =”0” Mjc=”0.33” Xcjc=”1”
Vjs =”0.75” Mjs=”0” Fc=”0.5” Vtf=”0” Tf=”0” Xtf=”0” I t f =”0” Tr=”0”

R:R7 net10 net7 R=”6.8k”
R:R4 net6 r e f R=”30k”
R:R3 net10 net6 R=”120k”
C:C4 net5 r e f C=”15uF”
C:C2 net4 net6 C=”10uF”
R:R6 net5 r e f R=”3.6k”

BJT:Q1 net3 net4 net5 r e f Type=”npn” I s =”2e−16” Bf=”50” Br=”1”
Rb=”5” Rc=”1” Re=”0” Cje =”0.4pF”Vje =”0.8” Mje=”0.4” Cjc =”0.5pF”
Vjc =”0.8” Cjs=”1pF” Vaf=”100” Nf=”1” Nr=”1” I k f =”0” Ikr =”0” Var=”0”
I s e =”0” Ne=”1.5” I s c =”0” Nc=”2” Rbm=”0” Irb =”0” Mjc=”0.33” Xcjc=”1”
Vjs =”0.75” Mjs=”0” Fc=”0.5” Vtf=”0” Tf=”0” Xtf=”0” I t f =”0” Tr=”0”

R:R5 net10 net4 R=”12k”
R:R2 net3 r e f R=”50k”
R:R1 net3 net10 R=”200k”
C:C1 net2 net3 C=”10uF”

. Def : End

Figure 9.6: Qucs format netlist for the two stage BJT amplifier represented by a user
defined symbol: NOTE -In this listing the entries for Q1 and Q2 have been
edited so that they fit on the text page.

289

9.4 Handling SPICE subcircuits

Although Qucs treats SPICE netlist components as subcircuits the SPICE to Qucs netlist
conversion process still allows SPICE subcircuits to be defined within the SPICE file being
converted. Such subcircuits then become local subcircuits to the SPICE netlist component
to which they are attached. This allows complex circuits consisting of many related, but
often different, circuit blocks to be represented by a single symbol in a Qucs schematic.
In such cases the resulting symbol represents a true subsection of an entire circuit rather
than a simple single circuit function subcircuit. To demonstrate this feature consider the
following examples; (1) a multisection LC delay line and (2) a CMOS ring counter.

9.4.1 Subcircuit example 1: a multisection LC delay line

The SPICE netlist for a ten section LC passive delay line is shown in Fig. 9.7. In this
listing each LC delay section is represented by a SPICE subcircuit and these sections are
connected in series to form the overall delay line. Figures 9.8 and 9.9 present the resulting
Qucs netlist and generated waveforms obtained with the test circuit shown in Fig. 9.10.

9.4.2 Subcircuit example 2: a two section CMOS ring counter

Subcircuit example one only contains a single local subcircuit. The next example demon-
strates how SPICE listings with more than one subcircuit are handled by Qucs. Such
circuits are representative of more complex electronic systems which form easily identifi-
able subsystem blocks.8 Fig. 9.11 shows the SPICE netlist for a simple two section CMOS
ring counter. This circuit is modelled at discreet component level and uses basic level
one MOS parameters to define the MOS transistors. These are then combined to form
NAND and NOR subcircuits. Again for completeness the resulting Qucs netlist is shown
in Fig. 9.12 together with a typical set of counter input and output signal waveforms,
Fig. 9.13.

8One significant advantage that Qucs has when compared to netlist entry only circuit simulators is that
it is possible the define schematic symbols for subsystem blocks that comprise discreet components
and one or more local subcircuits. These may then be employed like any other Qucs symbols when
constructing circuit schematics.

290

∗ Z0 = 320 Ohm.
∗
. subckt l c n1 n2
l 1 n1 n2 10uh
c1 n2 0 10 pf
. ends
∗
r s n9 n10 320ohm
x1 n10 n11 l c
x2 n11 n12 l c
x3 n12 n13 l c
x4 n13 n14 l c
x5 n14 n15 l c
x6 n15 n16 l c
x7 n16 n17 l c
x8 n17 n18 l c
x9 n18 n19 l c
x10 n19 n20 l c
r l n20 0 320ohm
. end

Figure 9.7: SPICE netlist for a ten section LC delay line..

. Def : s t o q f i g 1 0 a net0 net10 net1 net2 net3 net4
net5 net6 net7 net8 net9

Sub :X1 net0 net10 net1 net2 net3 net4
net5 net6 net7 net8 net9 gnd Type=”t e s t 3 p p c i r ”

. Def : End

. Def : t e s t 3 p p c i r netN9 netN11 netN12 netN13 netN14
netN15 netN16 netN17 netN18 netN19 netN20 r e f

R:RL netN20 r e f R=”320Ohm”
Sub : X10 r e f netN19 netN20 Type=”LC”
Sub :X9 r e f netN18 netN19 Type=”LC”
Sub :X8 r e f netN17 netN18 Type=”LC”
Sub :X7 r e f netN16 netN17 Type=”LC”
Sub :X6 r e f netN15 netN16 Type=”LC”
Sub :X5 r e f netN14 netN15 Type=”LC”
Sub :X4 r e f netN13 netN14 Type=”LC”
Sub :X3 r e f netN12 netN13 Type=”LC”
Sub :X2 r e f netN11 netN12 Type=”LC”
Sub :X1 r e f netN10 netN11 Type=”LC”
R:RS netN9 netN10 R=”320Ohm”
. Def :LC r e f netN1 netN2
L : L1 netN1 netN2 L=”10uH”
C:C1 netN2 r e f C=”10pF”
. Def : End

. Def : End

Figure 9.8: Qucs netlist for a 10 section LC delay line: NOTE -In this listing the entries
for the .Def statements have been edited so that they fit on the text page.

291

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

1

time

vi
n.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v1
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v2
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v3
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v4
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v5
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7
-0.1

0

0.1

0.2

time

v6
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7
-0.2

0

0.2

time

v8
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

-0.1

0

0.1

time

v9
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.05

time

v1
00

.V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v7
0.

V
t

Figure 9.9: Simulation waveforms for a 10 section LC delay line.

292

V1
U1=0 V
U2=1 V
T1=0
T2=5 n

20nS

10nS

40nS

30nS

50nS

60nS

70nS

80nS

90nS

100nS

SUB1

transient
simulation

TR1
Type=lin
Start=0
Stop=120 ns
IntegrationMethod=Gear
Order=6

vin

v10

v20

v30

v40

v50

v60

v70

v80

v90

v100

Figure 9.10: LC delay line test circuit.

∗ Two stage CMOS r ing counter c i r c u i t .
∗
x1 1 5 6 nand2
x2 1 6 7 nand2
x3 3 6 2 nand2
x4 2 7 3 nand2
x5 1 2 8 nor2
x6 1 8 9 nor2
x7 5 8 4 nor2
x8 4 9 5 nor2
∗
. model modp pmos(vto=−1 kp=10u
+ cgdo=0.2n cgso =0.2n cgbo=2n)
. model modn nmos(vto=1 kp=10u
+ cgdo=0.2n cgso =0.2n cgbo=2n)
∗
. subckt nand2 1 2 3
m1 3 1 4 4 modp w=40u l=5u
m2 3 2 4 4 modp w=40u l=5u
m3 5 1 0 0 modn w=20u l=5u
m4 3 2 5 5 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
vcc 4 0 pu l s e (0 5 0 1ns 1ns 1 2)
. ends
∗
. subckt nor2 1 2 3
m1 4 1 7 7 modp w=40u l=5u
m2 3 2 4 4 modp w=40u l=5u
m3 3 2 0 0 modn w=20u l=5u
m4 3 1 0 0 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
vcc 7 0 pu l s e (0 5 0 1ns 1ns 1 2)
. ends
. end

Figure 9.11: SPICE netlist for a two section CMOS ring counter.

293

Qucs 0 . 0 . 1 1 /media/hda2/OPAMP templates/ t e s t s t o q f i g 1 1 a . sch
. Def : s t o q f i g 1 1 a c i r net1 net4 r e f

. Def :NOR2 r e f net1 net2 net3
Vpulse :VCC net7 cnet0 U1=”0” U2=”5” T1=”0” Tr=”1ns ” Tf=”1ns ” T2=”1”
MOSFET:M1 net1 net4 net7 net7 Type=”p f e t ” W=”40u” L=”5u” Vt0=”−1”

Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M2 net2 net3 net4 net4 Type=”p f e t ” W=”40u” L=”5u” Vt0=”−1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M3 net2 net3 r e f r e f Type=”n f e t ” W=”20u” L=”5u” Vt0=”1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M4 net1 net3 r e f r e f Type=”n f e t ” W=”20u” L=”5u” Vt0=”1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

C:C1 net1 r e f C=”10p”
C:C2 net2 r e f C=”10p”
Vdc :VCC cnet0 r e f U=”0”
. Def : End
. Def :NAND2 r e f net1 net2 net3
Vpulse :VCC net4 cnet1 U1=”0” U2=”5” T1=”0” Tr=”1ns ” Tf=”1ns ” T2=”1”
MOSFET:M1 net1 net3 net4 net4 Type=”p f e t ” W=”40u” L=”5u” Vt0=”−1”

Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M2 net2 net3 net4 net4 Type=”p f e t ” W=”40u” L=”5u” Vt0=”−1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M3 net1 net5 r e f r e f Type=”n f e t ” W=”20u” L=”5u” Vt0=”1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M4 net2 net3 net5 net5 Type=”n f e t ” W=”20u” L=”5u” Vt0=”1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

C:C1 net1 r e f C=”10p”
C:C2 net2 r e f C=”10p”
Vdc :VCC cnet1 r e f U=”0”
. Def : End
Sub :X8 r e f net4 net9 net5 Type=”NOR2”
Sub :X7 r e f net5 net8 net4 Type=”NOR2”
Sub :X6 r e f net1 net8 net9 Type=”NOR2”
Sub :X5 r e f net1 net2 net8 Type=”NOR2”
Sub :X4 r e f net2 net7 net3 Type=”NAND2”
Sub :X3 r e f net3 net6 net2 Type=”NAND2”
Sub :X2 r e f net1 net6 net7 Type=”NAND2”
Sub :X1 r e f net1 net5 net6 Type=”NAND2”

. Def : End
Sub :X1 vin vout gnd Type=”s t o q f i g 1 1 a c i r ”
Vrect :V1 vin gnd U=”5 V” TH=”1 us ” TL=”1 us ” Tr=”1 ns ” Tf=”1 ns ” Td=”0 ns ”
.TR:TR1 Type=”l i n ” Star t =”0” Stop=”30u” Points =”1000” Integrat ionMethod=”Trapezo ida l ”
Order=”2” I n i t i a l S t e p =”0.01 ns ” MinStep=”1e−18” MaxIter=”150” r e l t o l =”0.01”
ab s t o l =”1 uA” vnto l =”100 uV” Temp=”26.85” LTErelto l=”1e−3” LTEabstol=”1e−4”
LTEfactor=”1” So lve r=”CroutLU” relaxTSR=”no ” in i t i a lDC=”yes ” MaxStep=”0”

Figure 9.12: Qucs netlist for a two section CMOS ring counter: NOTE -In this listing the
entries for MOSFETs and transient analysis have been edited so that they fit
on the text page.

294

0 2e-6 4e-6 6e-6 8e-6 1e-5 1.2e-5 1.4e-5 1.6e-5 1.8e-5 2e-5 2.2e-5 2.4e-5 2.6e-5 2.8e-5 3e-5

0

2

4

6

time

vi
n.

V
t

0 2e-6 4e-6 6e-6 8e-6 1e-5 1.2e-5 1.4e-5 1.6e-5 1.8e-5 2e-5 2.2e-5 2.4e-5 2.6e-5 2.8e-5 3e-5

0

2

4

6

time

vo
ut

.V
t

Figure 9.13: Two stage CMOS ring counter signal waveforms.

295

9.5 Limitations when converting SPICE netlists

Not all SPICE netlists can be converted to Qucs netlist format and simulated by Qucs9.
There are a number of reasons for this. The first and most obvious is due to the fact that
some SPICE components have not been implemented in Qucs yet. Nonlinear controlled
voltage and current sources are an example.10 There are also a number of detailed dif-
ferences between the SPICE and Qucs implementation of components common to both
simulators, one being the lack of PWL features in the Qucs independent voltage and cur-
rent sources. A second area that represents a significant limitation, for those readers who
regularly write SPICE netlists as part of their simulation work, is the fact that Qucs con-
tains a much greater range of predefined primitive components that are not available in
either the SPICE 2 or SPICE 3 simulators. Perhaps this is not so much a limitation but an
indication of the current development effort being put into Qucs by the development team.
As the development of Qucs progresses it is expected that all the component features found
in SPICE will have a corresponding entry in Qucs11.

9.6 Extending the SPICE netlist language

The standard SPICE 2 and SPICE 3 hardware description languages do not allow (1)
component values to be defined by algebraic equations12 or (2) parameters to be passed
to subcircuits. This makes writing universal subcircuit models very difficult, forcing semi-
conductor device manufacturers to issue individual SPICE models for each device they
manufacture rather than a single generalised model13 for a given type of integrated circuit.
A well known example being the SPICE Boyle14 operational amplifier models. A number
of current commercial circuit simulators15 have been extended to include the parameter
based features outlined above. In the case of those simulators based on the unextended
Berkely SPICE 2G6 or SPICE 3F516 code a different approach is often adopted. This is

9A number of Qucs users have reported problems in the past when trying to simulate SPICE netlists for
components that have been published by device manufactures, see for example, ”Qucs SPICE error -
please...”, William Flyn <WF215@ca...>, 29.8.2006, Qucs help forum.

10SPICE 2 polynomal controlled voltage and current sources and SPICE 3 type B sources are not imple-
mented in any of the Qucs versions so far released. Their implementation is on the to-do list but no
date for their implementation has been fixed yet.

11Future plans in this area are discussed in a later section of these notes.
12Please note this is not strictly true as SPICE 3 B sources can be defined by equations involving simulation

variables and other data.
13In a generalised model only one model description is provided for each generic component/circuit. Dif-

ferent component models are formed by passing parameters to the generalised model. SPICE employs
this approach to represent semiconductor devices through the use of the .model statement. However,
in the .model case the code for each type of semiconductor device is hardwired into the simulator code
rather than being defined by a subcircuit.

14Boyle,G.R., B.M. Cohn, D.O. Pederson, and J.E. Solomon, 1974, Macromodeling of integrated circuit
amplifiers, IEEE Journal of Solid-State Circuits (December).

15For example PSPICE, HSPICE and IS-SPICE.
16For example NGSPICE, TCLSPICE and WINSPICE.

296

based on the use of a preprocessor, similar to that found in the C language, which takes as
input a parameter and equation style netlist and outputs a standard SPICE netlist with
the parameters and equations evaluated to give a numerical result. The advantage of this
approach is that the preprocessor can be used with any SPICE simulator or indeed with
Qucs. Two such preprocessors are SPICEPRM and SPICEPP.17 The flow diagram for the
Qucs simulation sequence including a SPICE preprocessing stage is shown in Fig. 9.14.
This diagram clearly shows how both standard SPICE and parameterised netlists can be
linked into the Qucs simulation cycle. Of the two SPICE preprocessors introduced above
SPICEPP is probably the most useful from a Qucs users point of view18 as it adds more
features to the overall simulation process. Hence the notes that follow will concentrate on
describing how SPICEPP can be used with Qucs.

9.6.1 The SPICEPP preprocessor

SPICEPP19 is a preprocessor for Berkeley SPICE 3F5, adding support for a number of
structures found in commercial SPICE simulators, specifically SPICE commands .param,
.global, .lib, .temp, .meas and inline comments ($). The remainder of these notes explain
the use of commands .param, .global and the inline comment as these add specific func-
tionality to Qucs that is not provided by other sections of the Qucs simulation software.
The definition of these commands are:

• .param data=dataval <data2=dataval2> The .param statement adds the
ability to parameterise SPICE data, including component values, voltages, currents
and equations.

• .globel node1 <node2> The .global statement causes the named nodes to
override local subcircuit nodes of the same name.

• Algebraic statements are enclosed in quotes ‘ ‘20.

• Inline comments start with the $ symbol and continue to the end of a line.

17(1) Andrew J. Borsa, SPICEPRM, A SPICE preprocessor for parameterised subcircuits, V 0.11,
1996, <andy@moose.mv.com> (SPICEPRM can be downloaded from the Sourceforge.net ngspice
project.) and (2) John Shaehen, SPICEPP, A SPICE proprocessor for SPICE 3F5, V 1.5, 2000,
<john@reptechnic.com.au>. (SPICEPP can be downloaded from the Sourceforge.net tclspice project.)

18SPICEPP was written after SPICEPRM and extends the facilities offered by SPICEPRM.
19SPICEPP is written in PERL. The SPICEPP.pl script should be copied to a directory on your search

path. On my system I keep it in the Qucs bin directory. PERL must also be installed on your system.
20The ‘ character can be found on the most left key on the row of numerical keys (‘ 1 2 3 4 5 6 7 8 9 0 -

.......) - this is the case on my keyboard.

297

Qucs GUI

SPICE

Parameterised
netlist

SPICE

Preprocessor
Generate SPICE
netlist symbol

Predefined Qucs
component symbols

User defined subcircuit symbols

Generated using Qucs schematic
capture

Qucs
library

components

File XXXX File XXXX.cir

CIRCUIT
entered using Qucs
schematic capture

SIMULATE

QUCSATOR

Simulation
output
data

Run

View

Qucs netlist code

Generate Qucs netlist code
from GUI schematic, including
conversion of SPICE code to
Qucs netlist format

Qucs plots
and tables

Figure 9.14: Flow diagram of Qucs simulator stages including SPICE preprocessing.

298

9.7 Circuit template models

When modelling devices or circuits for simulation a particularly productive approach is the
use of a universal template that can be employed to generate models for devices of the same
type but with different characteristics. By simply changing the parameters embedded in a
universal template a new device model is generated when the netlist code is passed through
the SPICEPP preprocessor. Consider the SPICE template model shown in Fig. 9.15. This
represents a simple modular AC macromodel21 for an OP AMP. OP AMP internal pins
are given by integers and external pins by names in SPICE 3 format. The parameters for a
UA741 OP AMP are shown listed at the start of the SPICE preprocessor netlist. These are
used in the calculation of the component values in later sections of the netlist. In all cases
parameters must be defined before they are used in component calculations. Passing this
listing through the SPICEPP preprocessor22 and generating a Qucs user defined symbol
for the UA741 OP AMP results in the Qucs netlist and symbol shown in Figures 9.16
and 9.17. An application of the generated UA741 OP AMP model is shown in Fig. 9.18.
This circuit is a notch filter. In Fig. 9.18 the band rejection characteristic of the filter are
realised by a twin-T RC network. Figure 9.19 shows the simulated small signal transfer
characteristics of this filter.

21Details of the model derivation can be found in the Qucs Modelling Operational Amplifiers tutorial,
Qucs Web site.

22The SPICEPP PERL script can be run from a shell using the command spicepp.pl name.pp >
name.cir , where name is the name of the file to be processed.

299

∗
∗ Device p ins 1 . input in n , in p
∗ 2 . output out
∗
∗ ua741 OP AMP parameters
∗
. param vo f f = 0 .7m
. param ib = 80n
. param i o f f = 20n
. param rd = 2meg
. param cd = 1 .4p
. param cmrrdc = 31622.8
. param fcmz = 200 .0
. param aoldc = 199526
. param gbp = 1meg
. param fp2 = 3meg
. param ro = 75 .0
∗
∗ input s tage
∗
vo f f 1 in n 6 ’ v o f f /2 ’
v o f f 2 7 in p ’ v o f f /2 ’
ib1 0 6 ib
ib2 7 0 ib
i o f f 1 7 6 ’ i o f f /2 ’
r1 6 8 ’ rd /2 ’
r2 7 8 ’ rd /2 ’
c in1 6 7 cd
∗
∗ common−mode zero s tage
∗
ecm1 12 0 8 0 ’1 e6/cmrrdc ’
rcm1 12 13 1meg
ccm1 12 13 ’1/(2 ∗ 3 .1412 ∗ 1e6 ∗ fcmz) ’
rcm2 13 0 1
∗
∗ d i f f e r e n t i a l and common−mode
∗ s i g n a l summing s tage
∗
gmsum1 0 14 7 6 1
gmsum2 0 14 13 0 1
rsum1 14 0 1
∗
∗ vo l tage gain s tage 1
∗
gmp1 0 9 14 0 1
rado 9 0 ao ldc
cp1 9 0 ’1/(2 ∗ 3 .1412 ∗ gbp) ’
∗
∗ vo l tage gain s tage 2
∗
gmp2 0 11 9 0 1
rp2 11 0 1
cp2 11 0 ’1/(2 ∗ 3 .1412 ∗ fp2) ’
∗
∗ output s tage
∗
eos1 10 0 11 0 1
ros1 10 out ro
∗

Figure 9.15: SPICE template preprocessor netlist for a UA741 AC modular OP AMP
model.

300

. Def : s t o q f i g 1 7 net0 net1 net2
Sub :X1 net0 net1 net2 gnd Type=”s t o q f i g 1 5 c i r ”
. Def : End

. Def : s t o q f i g 1 5 c i r netIN N netOUT netIN P r e f
R:ROS1 net10 netOUT R=”75”
VCVS:EOS1 net11 net10 r e f r e f G=”1”
C:CP2 net11 r e f C=”5.30583 e−08”
R:RP2 net11 r e f R=”1”
VCCS:GMP2 net9 r e f net11 r e f G=”1”
C:CP1 net9 r e f C=”1.59175 e−07”
R:RADO net9 r e f R=”199526”
VCCS:GMP1 net14 r e f net9 r e f G=”1”
R:RSUM1 net14 r e f R=”1”
VCCS:GMSUM2 net13 r e f net14 r e f G=”1”
VCCS:GMSUM1 net7 r e f net14 net6 G=”1”
R:RCM2 net13 r e f R=”1”
C:CCM1 net12 net13 C=”7.95874 e−10”
R:RCM1 net12 net13 R=”1M”
VCVS:ECM1 net8 net12 r e f r e f G=”31.6228”
C: CIN1 net6 net7 C=”1.4 e−12”
R:R2 net7 net8 R=”1e+06”
R:R1 net6 net8 R=”1e+06”
Idc : IOFF1 net7 net6 I=”1e−08”
Idc : IB2 net7 r e f I=”8e−08”
Idc : IB1 r e f net6 I=”8e−08”
Vdc :VOFF2 net7 netIN P U=”0.00035”
Vdc :VOFF1 netIN N net6 U=”0.00035”

. Def : End

Figure 9.16: Qucs netlist for a UA741 AC modular OP AMP model.

spice

IN_N OUT

IN_P

Ref

X1
File=stoq_fig15.cir

P_IN_N

P_IN_P

P_OUT
-
+

SUB1

Figure 9.17: Qucs symbol for a UA741 AC modular OP AMP model.

301

-
+

SUB1

V1
U=1 V

C4
C=0.175u

C3
C=0.175u

C2
C=0.45u

R6
R=15k

R3
R=22k

R4
R=20k

R2
R=100

R1
R=100k

R5
R=6.8k

C1
C=2.2u

dc simulation

DC1

ac simulation

AC1
Type=lin
Start=10 Hz
Stop=101 Hz
Points=200Equation

Eqn1
gain_dB=dB(vout.v)
phase_deg=phase(vout.v)

vout

vin

Figure 9.18: A twin-T notch filter circuit.

10 100
5

10

15

acfrequency

vo
ut

.v

10 100

16

18

20

22

24

acfrequency

ga
in

_d
B

10 100

0

50

acfrequency

ph
as

e_
de

g

Figure 9.19: Small signal transfer characteristics for a twin-T notch filter circuit.

302

9.8 Building circuit design equations into netlists

Figure 9.20 illustrates a bandpass filter that has a bandwidth which is small compared to
it’s center frequency. The circuit is often referred to as the Dalyiannis-Friend filter after
its developers. The filter center frequency f0, voltage gain magnitude H0, bandwidth B
and Q factor are given by the following equations:

• f0 =
1

2πC
√

(R1‖R2)R3

, where C = C1 = C2

• H0 =
R3

2R1

• B =
1

πR3C

• Q =
f0

B
=

1

2

√
R3

R1‖R2

When designing a filter for a specific specification, for example say f0 = 1kHz, B = 200Hz
and H0 = 10, values for the filter resistor and capacitor values need to be calculated. This
can, of course, be done manually. However, this process is often tedious, especially if a
number of filters need to be designed each with different specifications. Circuit simulators
are by their very nature primarily designed to analyse and simulate the performance of
circuits who’s component values are known. As such they are tools for analysis rather than
design. In practice, of course, engineers employ circuit simulators to check their circuit
designs. Qucs is attempting to bridge the gap between design and analysis by using add-
on software components for designing circuits with well understood structures and design
procedures23.
In the previous section it was shown that the SPICEPP preprocessor could be used to
calculate model component values. By a simple extension of this concept it is also possible
to embed design equations into a netlist. Shown in Fig. 9.21 is a SPICEPP netlist for the
Dalyiannis-Friend filter. The UA741 OP AMP is modelled with a SPICE subcircuit called
opamp_ac and has its own set of parameters24. The first set of design parameters represent
the filter specification and are used in the SPICEPP conversion process to calculate the
filter resistor and capacitor component values. Note also the use of inline comments for
documenting the netlist code. Figures. 9.22 and 9.23 show a basic filter test circuit and the
resulting simulation transfer functions. Hence, not only can the SPICEPP preprocessor
be used for setting up device models but it can also aid the design of entire circuit blocks
provided design equations are available for a given circuit configuration. By combining
SPICEPP with Qucs a very significant design/analysis tool becomes available opening up
new possibilities for Qucs users.

23The Qucs Tools drop-down menu lists the currently available design functions that have been imple-
mented with release of Qucs you are using.

24These are defined within a subcircuit and should have names unique to the subcircuit model being
defined.

303

OP1

R1

R3

C1

C2

R2

Vout

Vin

Figure 9.20: The Dalyiannis-Friend bandpass filter circuit.

304

∗ Dely iann i s Friend Bandpass f i l t e r des ign
∗ Design parameters
. param f c = 2000.0 $ F i l t e r c en te r f requency (Hz)
. param bw = 200.0 $ F i l t e r bandwidth (Hz)
. param q = 10 .0 $ F i l t e r q f a c t o r = f0 /bw
. param r3 i v = 200k $ Assumed value f o r r f 3
. param h0 = 10 .0 $ F i l t e r f 0 gain magnitude
∗
∗ F i l t e r c i r c u i t p ins : input n1 , output n3
∗
r3 n3 n4 r3 i v
c1 n2 n3 ’ q /(3 .1412∗ f c ∗ r 3 i v) ’
c2 n2 n4 ’ q /(3 .1412∗ f c ∗ r 3 i v) ’
r1 n1 n2 ’ r 3 i v /(2∗h0) ’
r2 n2 0 ’ r 3 i v /((4∗q∗q)−(2∗h0)) ’
x1 0 n4 n3 opamp ac

∗ s u b c i r c u i t por t s : in+ in− out
. subckt opamp ac in p in n out
∗
∗ ua741 OP AMP parameters
. param vo f f = 0 .7m
. param ib = 80n
. param i o f f = 20n
. param rd = 2meg
. param cd = 1 .4p
. param cmrrdc = 31622.8
. param fcmz = 200 .0
. param aoldc = 199526
. param gbp = 1meg
. param fp2 = 3meg
. param ro = 75 .0
∗ input s tage
vo f f 1 in n 6 ’ v o f f /2 ’
v o f f 2 7 in p ’ v o f f /2 ’
ib1 0 6 ib
ib2 7 0 ib
i o f f 1 7 6 ’ i o f f /2 ’
r1 6 8 ’ rd /2 ’
r2 7 8 ’ rd /2 ’
c in1 6 7 cd
∗ common−mode zero s tage
ecm1 12 0 8 0 ’1 e6/cmrrdc ’
rcm1 12 13 1meg
ccm1 12 13 ’1/(2 ∗ 3 .1412 ∗ 1e6 ∗ fcmz) ’
rcm2 13 0 1
∗ d i f f e r e n t i a l and common−mode s i g n a l summing s tage
gmsum1 0 14 7 6 1
gmsum2 0 14 13 0 1
rsum1 14 0 1
∗ vo l tage gain s tage 1
gmp1 0 9 14 0 1
rado 9 0 ao ldc
cp1 9 0 ’1/(2 ∗ 3 .1412 ∗ gbp) ’
∗ vo l tage gain s tage 2
gmp2 0 11 9 0 1
rp2 11 0 1
cp2 11 0 ’1/(2 ∗ 3 .1412 ∗ fp2) ’
∗
∗ output s tage
eos1 10 0 11 0 1
ros1 10 out ro
. ends

Figure 9.21: SPICEPP netlist for the Dalyiannis-Friend filter.

305

V1
U=1 V

ac simulation

AC1
Type=lin
Start=1000Hz
Stop=3000Hz
Points=200

spice
N1 N3

Ref

X1
File=df_filter.cir

Equation

Eqn1
phase_deg=phase(vout.v)
gain_dB=dB(vout.v)

vin vout

Figure 9.22: The Dalyiannis-Friend bandpass filter test circuit.

1e3 1.5e3 2e3 2.5e3 3e3

0

5

10

acfrequency

vo
ut

.v

1.7e3 1.8e3 1.9e3 2e3 2.1e3 2.2e3

0

5

10

acfrequency

vo
ut

.v

1.7e3 1.8e3 1.9e3 2e3 2.1e3 2.2e3

-200

0

200

acfrequency

ph
as

e_
de

g

1e3 1.5e3 2e3 2.5e3 3e3

-200

0

200

acfrequency

ph
as

e_
de

g

1e3 1.5e3 2e3 2.5e3 3e3

0

10

20

acfrequency

ga
in

_d
B

Figure 9.23: Simulated small signal AC transfer functions for the Dalyiannis-Friend band-
pass filter.

306

9.9 Global nodes

In the SPICE 2 and SPICE 3 hardware description languages only the earth node is global.
By convention this is given node name 0 and is assumed by the SPICE language passer
to be earth whenever it occurs in a circuit netlist. When connecting discreet components
with other subcircuit blocks there is often a need for other nodes to be designated global;
the classic example being power supply nodes. SPICEPP allows nodes to designated as
global. These are effectively connected together to form one net covering both outside
and inside subcircuits. The best way to understand the use of global nodes is to consider
an example. Figure 9.11 gives the SPICE netlist for the two section CMOS ring counter.
Many readers would possibly have noticed that in this netlist both the NAND2 and NOR2
subcircuits include internal voltage sources25. This is, of course, not necessary and indeed
inefficient from a simulation point of view. A better approach would be to link individual
gates with a power supply net. The SPICEPP netlist given in Fig. 9.24 illustrates how
the .global command can be used to define a global power supply node. After passing this
code through SPICEPP the SPICE netlist printed in Fig. 9.25 results. Simulation with
Qucs gives the same waveforms displayed in Fig. 9.13.

25The DC voltage supply for each logic block is generated by a pulse source. This has the effect of
simulating the rising edge of the power supply switch on transient and aids DC convergence.

307

∗ Two stage CMOS r ing counter c i r c u i t .
∗
∗ External nodes : input 1 , output 4 , +ve supply nvcc
∗
∗ g l oba l node
∗
. g l oba l nvcc
∗
x1 1 5 6 nand2
x2 1 6 7 nand2
x3 3 6 2 nand2
x4 2 7 3 nand2
x5 1 2 8 nor2
x6 1 8 9 nor2
x7 5 8 4 nor2
x8 4 9 5 nor2
∗
. model modp pmos(vto=−1 kp=10u
+ cgdo=0.2n cgso =0.2n cgbo=2n)
. model modn nmos(vto=1 kp=10u
+ cgdo=0.2n cgso =0.2n cgbo=2n)
∗
. subckt nand2 1 2 3
m1 3 1 nvcc nvcc modp w=40u l=5u
m2 3 2 nvcc nvcc modp w=40u l=5u
m3 5 1 0 0 modn w=20u l=5u
m4 3 2 5 5 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
∗vcc 4 0 pu l s e (0 5 0 1ns 1ns 1 2)
. ends
∗
. subckt nor2 1 2 3
m1 4 1 nvcc nvcc modp w=40u l=5u
m2 3 2 4 4 modp w=40u l=5u
m3 3 2 0 0 modn w=20u l=5u
m4 3 1 0 0 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
∗vcc 7 0 pu l s e (0 5 0 1ns 1ns 1 2)
. ends

Figure 9.24: SPICEPP netlist for a two section CMOS ring counter with global power
supply net node nvcc.

308

∗ Two stage CMOS r ing counter c i r c u i t .
x1 1 5 6 nvcc nand2
x2 1 6 7 nvcc nand2
x3 3 6 2 nvcc nand2
x4 2 7 3 nvcc nand2
x5 1 2 8 nvcc nor2
x6 1 8 9 nvcc nor2
x7 5 8 4 nvcc nor2
x8 4 9 5 nvcc nor2
. model modp pmos vto=−1 kp=10u cgdo=0.2n cgso =0.2n cgbo=2n
. model modn nmos vto=1 kp=10u cgdo=0.2n cgso =0.2n cgbo=2n
. subckt nand2 1 2 3 nvcc
m1 3 1 nvcc nvcc modp w=40u l=5u
m2 3 2 nvcc nvcc modp w=40u l=5u
m3 5 1 0 0 modn w=20u l=5u
m4 3 2 5 5 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
. ends
. subckt nor2 1 2 3 nvcc
m1 4 1 nvcc nvcc modp w=40u l=5u
m2 3 2 4 4 modp w=40u l=5u
m3 3 2 0 0 modn w=20u l=5u
m4 3 1 0 0 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
. ends

Figure 9.25: SPICE netlist for a two section CMOS ring counter with global power supply
net node nvcc.

9.10 End Note

This tutorial note describes how SPICE netlists can be simulated using Qucs. The text
is much more than a basic outline of the processes needed to link SPICE circuit files to
Qucs. While writing this note an attempt has been made to stress the fact that topics like
SPICE/Qucs netlist compatibility and conversion are important to the future development
of Qucs. So an interesting, and thought provoking question, is how does Qucs develop next
in relation to SPICE and indeed how best is it to make sure that Qucs users can get the
most from all the published SPICE information and device models? After all there is no
point in reinventing the wheel! Complete compatibility with SPICE will not be possible
until all the basic SPICE 2 and SPICE 3 primitive components are added to Qucs. This will
take time but is happening as the Qucs team develops the package26. Adding equations
to component calculations is a very much a current active topic in Qucs development.
Recently, Michael Magraf has added parameter passing to the Qucs GUI. Stefan Jahn will
add the necessary simulator routines for handling equations and parameter passing when
time allows. In the long term not only will it be possible to determine component values
using calculations at the simulation initialisation phase but it will also be possible to allow
such components to be dependent on simulation voltage and current variables. Qucs will

26Michael Magraf has recently added a four terminal transmission line to Qucs. Future testing will confirm
if this is similar to the SPICE T component.

309

then be able to simulate circuits containing nonlinear voltage and current sources like the
SPICE 3 B component. These notes are very much a report on some of the work on Qucs
device modelling I have been doing in recent months. Again if there is enough interest in
this area of Qucs development I will upgrade them in the future. My thanks to Stefan
Jahn for all his encouragement while I have been developing the material reported in this
tutorial note.

310

10 Biasing a BJT Transistor

10.1 Graphical methods

You can bias a bipolar junction transistor in several ways. Determining the best method
for your application is easy with a graphical technique.
Biasing an active device, such as a bipolar junction transistor (BJT), requires that you
set the dc voltages and currents of the device. To optimize the desired result, you need
various bias values. For instance, the input de-vice for a low-noise amplifier may have its
best noise performance at 50 µA of collector current and a maximum of 5V of collector-
to-emitter voltage, whereas later amplifier stages may require 20-mA collector current and
18V collector-to-emitter voltage to generate the necessary ac voltage at the output. When
you determine the desired bias conditions, you also need to make sure they are repeatable–
within certain limits–to ensure consistent performance.

Figure 10.1: Different feed back technics

Biasing-technique analysis for BJTs generally progresses in complexity from the fixed-bias

311

method (see fig 10.1, to the shunt circuit, to the stabilized circuit, . Studies do not usually
cover the shunt-divider and universal circuit. However, questions still arise about the bias
stability of the shunt bias circuit. It is usable in some noncritical applications, but how
inferior is it to the stabilized circuit? Designers are generally taught that the stabilized
circuit is the one to use for repeatable biasing.

One way to analyze the stability of the various biasing methods is to use stability factors,
which characterize the change in collector current due to changes in the transistor’s HFE
(current gain), ICBO (collector-to-base leakage current), and VBE . Although these factors
are useful, comparing bias circuits and bias-resistor values requires tedious calculations. A
visual presentation that compares the stability of the various circuits is more useful.
Looking at the equation for IC in Figure 1b, note that much of the change in IC is due to the
differing voltages developed across R1 because of the range of HFE. This difference leads
to a question: If some of the current through R1 is fixed, would the result be less voltage
change across R1 and hence, less change in IC? This thinking leads to the shunt-divider
circuit (Figure 1c). Because VBE changes little, R2 supplies a relatively fixed component
of the current through R1, making R1 a smaller value than it would be without R2. The
equation for the shunt divider shows that a smaller value of R1 in the denominator causes
less change in IC due to changes in HFE. However, along with RC and R2, R1 shows up
in the numerator as a multiplying factor for VBE.

You can next look at how strongly each of these factors influences IC. Because you can
derive all the circuits in Figure 1 from the universal circuit (Figure 1e) by making the
appropriate resistors either infinite (open circuits) or zero (short circuits), the same uni-
versality is possible for the equations. Considering the circuit equations and a range of
parameters and bias-resistor values, you can produce graphs in which the Y axis represents
the change in IC.
To make valid comparisons of the circuits, you need a common parameter related to the
biasing for the X axis. The ratio of the collector current to the bias current in R1 works.
This ratio is common to the circuits and reflects how stiff the biasing is. To show realistic
conditions, the data also includes temperature effects on VBE and HFE for a temperature
range of 25 to 75◦C and a 3-to-1 spread in HFE.
For comparison purposes, all the circuits use a 10V supply for VCC at a nominal collector
current of 1 mA, with HFE of 100 and VBE of 0.60V at 25◦C. Calculating resistors for 5V
VCE and selecting RE to develop 1V at the emitter produces the results for the graphical
technique. The model for temperature effects of the device is VBE=0.60?0.002?(T(actual)
25◦C), representing the standard 2-mV/◦C coefficient for diodes. Calculations from the
data sheet of the 2N2222A transistor produce an average temperature coefficient for HFE
of about 0.58% /◦C, which you can represent by

HFETemp = HFEMax × [1 + (T (actual)?25◦C)0.0058] (10.1)

Calculating IC for a minimum HFE = 50 at 25◦C and for the maximum HFE = 150 at
75◦C yields an HFETemp of 194 and VBE of 0.50V.

312

This analysis ignores the effects of ICBO. For the nominal collector current of 1 mA and a
maximum temperature of 75◦C, the contribution of ICBO to IC is a few percent, at most,
for the fixed-bias and shunt-bias circuits in Figures 1a and 1b and less for the bias circuits
of Figures 1c, 1d, and 1e.

10.1.1 Graphical approach shows trade-offs

The results of this analysis appear as a simple visual comparison of the current stability of
the various types of bias circuits (Figure 10.2). Using this figure, you can select the type
of bias circuit and the bias ratios for the necessary stability.

Figure 10.2: You can compare the performance of the BJT bias circuit by graphing the
change in collector current vs the ratio of the collector current to the current
in R1.

The horizontal axis is the ratio of the collector current, IC, to the current in resistor R1.
This bias ratio applies to all the circuits and indicates how much current is in the base-
biasing network compared with the collector current. Thus, a ratio of 1 indicates a stiff
bias circuit, with as much current in R1 of the bias network as in the collector, whereas
a ratio of 50 indicates that the collector current is 50 times the current in R1 of the bias
network. Because some of the results are unexpected, they give renewed consideration to
some of the bias circuits previously ignored.
The universal-bias method is obviously the best of the group. The price you pay for its
dc stability is the reduction in ac input resistance due to the negative feedback on R1, a
sort of Miller effect on resistors. R1 reduces by a factor of the voltage gain plus 1. This
feedback may improve distortion and bandwidth as well as reduce the output impedance

313

Figure 10.3: To eliminate the ac effects of feedback, split R1, and bypass the center to
ground.

at the collector. If you don’t want these ac effects of feedback, you can eliminate them
by splitting R1 into two parts and bypassing the center to ground (Figure 10.3). You can
improve performance of this circuit at any bias ratio by increasing the voltage drop across
RE, increasing the voltage drop across the collector resistor, or both.

The stabilized circuit has good stability to bias ratios as high as about 12. Above this
ratio, its stability rapidly decreases. The stabilized circuit relies on the voltage changes
fed back by the emitter current through RE, compared with the voltage, VB, at the base.
When the bias ratio becomes less stiff, changes in base current flowing through R1 due to
changes in HFE cause significant variations in VB. These variations result in changes in
IE and IC. As with the universal circuit, you can improve performance of the stabilized
circuit at any bias ratio by increasing the voltage drop across RE. Keep in mind that these
results are for a nominal HFE range of 50 to 150 plus temperature effects. Lower minimum
values of HFE require stiffer bias ratios for the same performance.

The superior performance of the shunt-divider circuit at bias ratios greater than 12, com-
pared with that of the stabilized circuit, is a surprise. When the shunt-divider circuit’s bias
is stiff, VC is strongly influenced by the ratio of R1 to R2 times VBE. As VBE changes
because of temperature, VC and, thus, IC, change approximately as the ratio of R1 to R2
times VBE changes.

Because IC plays the major role in determining VC, IC experiences wide variations for these
stiff biasing ratios. As the ratio becomes less stiff, the changes in VBE with temperature,
multiplied by the voltage-divider action, become less dominant, and performance improves
until, at the ratio of about 12, the shunt divider’s stability starts to surpass that of the
stabilized circuit. You can account for this performance by the negative feedback from the
collector resistor through R1. Because the collector resistor is usually much larger than

314

the emitter resistor of the stabilized circuit, the stability of the universal circuit holds up
better for less stiff bias ratios.

Because the shunt-divider circuit is more stable than the shunt circuit, consider the divider
circuit for applications that need less stability than the stabilized or universal circuits offer.
Because it saves the cost of the emitter-bypass capacitor necessary in the universal and
stabilized circuits, the shunt divider can be more cost-effective. Negative feedback through
R1 in the shunt-divider circuit reduces the input resistance and may improve distortion
and bandwidth, as well as reduce the output impedance in the same manner as in the
universal circuit. Again, you can negate these effects with a bypass capacitor in the center
of R1. This bypass capacitor is typically much smaller than the emitter-bypass capacitor
for the stabilized circuit.

Because the bias current for the shunt-bias circuit consists of only the base current, it has
only one ratio of IC to IR1, namely HFE, and is plotted as a single point. As the bias
ratio for the universal and shunt-divider circuits increases, the value of R2 increases until
it becomes infinite at an HFE of 100. Under these conditions, the circuits’ bias ratios
converge with the shunt-circuit ratio.

Figure 10.2 leads you to several general conclusions. The universal circuit has the best
stability over the widest range of bias ratios. The stabilized circuit has good stability for
stiff bias ratios, but you should take care if biasing ratios exceed 12. And, finally, the
shunt-divider circuit is a significant improvement over the shunt circuit and is better than
the stabilized circuit for large bias ratios.

10.2 Simulation technics

The previous section deals with a graphical method, but a more common method can be
to use the simulators to determine all the possible variation for a given schematic (include
hFE, Temperature, Voltage regulation, and so on ...) ; so the problem is more waht kind
of feedback I can use or not. Sorry but there is no striaght ansyert since this could a cost
issu e for example, or a performance issue1.

Anyway we need to evaluate the different biasing technics using the simulation tool. One
analysis will be done in the PA design chapter.

1This point is obviously not understood in the same way when discussing with marketing or development
or research teams, who knows why ?

315

11 BJT Modeling and Verification

warning

This chapter will describe an RF design issue using QUCS. The author assume that the
basic manipulation of qucs is known. You will find herein mainly a MacOsX description
that is close to a linux or unices architecture.

11.1 choice of transistor

The choice has been made to choose among the Philips RF wideband transistor library.
These components are easy to find, with resonnable prices.
This list could be found at http://www.semiconductors.philips.com/.
A resume of these transistors can be found in the figure 11.1
I will not discuss herein, the reason 1 why of the final choice, but the BFG425w is the
candidate. It offers high gain, with low figure noise (if LNA consideration) high transistion
frequency (25 GHz), its emitter is thermal lead, low feedback capacitance. This device
could be used in RF front end, analog or digital cellular, radar detectors, pagers, SATV,
oscillators. It is in a SOT343R package suitable for small integration.
The maximum acheivable gain is 20 dB with 25 mA, Vce = 2 V at 2 GHz and 25◦C. The
third order intercept point in these conditions is typically 22dBm.
These parameter should be compatible with our need. Here are the spice parameter of the
device.

.SUBCKT BFG425W 1 2 3

L1 2 5 1.1E-09

L2 1 4 1.1E-09

L3 3 6 0.25E-09

Ccb 4 5 2.0E-15

Cbe 5 6 80.0E-15

Cce 4 6 80.0E-15

Cbpb 5 7 1.45E-13

Cbpc 4 8 1.45E-13

Rsb1 6 7 25

Rsb2 6 8 19

1regarding current, Ft , Vce , power dissipation, etc . . .

316

Figure 11.1: transistor table from philips semiconductor

317

Q1 4 5 6 6 NPN

.MODEL NPN NPN

+ IS = 4.717E-17 + BF = 145 + NF = 0.9934

+ VAF = 31.12 + IKF = 0.304 + ISE = 3.002E-13

+ NE = 3 + BR = 11.37 + NR = 0.985

+ VAR = 1.874 + IKR = 0.121 + ISC = 4.848E-16

+ NC = 1.546 + RB = 14.41 + IRB = 0

+ RBM = 6.175 + RE = 0.1779 + RC = 1.780

+ CJE = 3.109E-13 + VJE = 0.9 + MJE = 0.3456

+ CJC = 1.377E-13 + VJC = 0.5569 + MJC = 0.2079

+ CJS = 6.675E-13 + VJS = 0.4183 + MJS = 0.2391

+ XCJC = 0.5 + TR = 0.0 + TF = 4.122E-12

+ XTF = 68.2 + VTF = 2.004 + ITF = 1.525

+ PTF = 0 + FC = 0.5501 + EG = 1.11

+ XTI = 3 + XTB = 1.5

.ENDS

Since the model used in SPICE and in QUCS rely on a gummel-poon modelisation, and
since the level of modelisation is the same, some quite direct conversion could be used to
create the library for QUCS.
To use directly this file, you will need to store the file in an other directory from the project
one (a small bug taken into account). Then it should work but some there are still some
issues on the parameters itselves, This is the reason why we will proceed in an other way.
The data sheet could be found on the philips web site.

318

Figure 11.2: spice parameter extract from philips data sheet

319

11.2 library creation

Remember that when creating a device, it is almost always mandatory to read of have a
look at on how the model is done is the technical documentation. It is very to understand
the limitation, and how we can correct some data if needed. The mian pity is that a lot
of commercial software are quite obscure on the real model they use and their limitation ;
QUCS is quite exceptionnal on this point this the complete modeling is explain theoretically
in a special technical paper.

In order to conduct these test, we need to create a model of our component. To perform
this you should create the file that contain all the libraries, this file is stored under

/usr/local/share/qucs/library/philips_RF_widebande_npn.lib

You can edit this file with vi. You need to add the following line :

<Qucs Library 0.0.7 "philips RF wideBand">

<Component BFG425W>

<Description>

RF wideband NPN 25GHz

2V, 25mA, 20dB , 2000MHz

Manufacturer: Philips Inc.

NPN complement: BFG425W

based on spice parameter from philips

sept 2005 thierry

</Description>

<Model>

<_BJT T_BFG425W_ 1 480 280 8 -26 0 0 "npn" 1 "47.17e-10"

1 "1" 1 "1" 1 "0.304" 1 "0.121" 1 "31.12" 1 "1.874" 0

"300.2e-15" 1 "3" 1 "484.8e-10" 1 "1.546" 1 "145" 1 "11.37"

1 "6.175" 1 "0" 1 "1.78" 1 "0177.9e-3" 1 "014.41" 1 "310.9e-15"

1 "0.900" 1 "0.346" 1 "137.7e-15" 1 "0.5569" 1 "0.207" 1 "0.500"

1 "667.5e-15" 1 "0.4183" 1 "0.239" 1 "0.550" 1 "4.122e-12" 1

"68.2" 1 "2.004" 1 "1.525" 1 "0.0" 1 "26.85" 1 "0.0" 0 "1.0" 0

"1.0" 0 "0.0" 0 "1.0" 0 "1.0" 0 "0.0" 0>

</Model>

</Component>

You can replace the 1 by 0, this will remove the visible checkbox, the fact to place a 1 first
enable the user to change and or view the parameters that are being used.
A trick to provide all the required syntax is to fill a NPN into the schematics, perform a
copy on the device, you should then have the model in the clipboard, just paste into to file

320

and add the description and the markup language boundaries. The syntaxe is explained
in the help at the topic description of the qucs file formats.
Then the device is visible in the Component Library Tool as mentionned in figure 11.3.

Figure 11.3: QUCS Component Library showing the new component

By doing this you haved the possibility to reuse the device as much as you want, and you
can debug devices in a more easy way.
Warning : in this section we have only describe the die of the device, for the parasitic
from the package, we will be obliged to describe this circuit, but later on.

11.3 device library verification

The first step, before using the device in a application, is to verify the model you use.
Especially since this model has been created by the user. In order to proceed, you need to
rely on exact data : that is to say the official datasheet.
it this step, you will need to create a project especially for the device verification. It is
good to keep a trace of the device verification, since you could have different use of this
device, so it is good to be able to redo some simulation around the model itself.
The created project should look that the figure 11.4.

project name : model_verif_bfg425w

project location : $HOME/.qucs/

For the validation we will need to use a specific bias of the device : Ic should be 25mA,
therefore Ib should be 300µA

321

Figure 11.4: QUCS project for model verification

322

Figure 11.5: DC validation and temperature

323

11.4 parasitic description of the package

In order to simulate properly the device, you need to used the correct package, that is to
say the SOT343R in our case, as mentionned on the philips web site (see fig. 11.6).
Eventhough the device has two emitter, the model used has only one emitter. The parasitic
of this model are shoyn in the spice netlist described in the choice of the transistor and
reproduced in a schematic (see fig. 11.8). These parameter are always critical to extract,
either you have the knowledge to do it or then you should rely on the piece of information
given by the device manucfacturer. It is also very difficult to figure out what have to
be changed in such description of the device. Some fitting have been performed using
3D electromagnetic software in the time domain based on MOM methods to verify these
parameters.
PhilipsÕ fifth generation double poly silicon wideband technology uses a steep emitter
doped profile resulting in transition frequencies over 20 GHz, and with poly base contacts
a low base resistance is obtained. Via the buried layer, the collector contact is brought
out at the top of the die. The substrate is connected directly to the emitter package lead,
resulting in improved thermal performance (see fig 11.7).
From this schematics you can edit the symbol that could be used in the next simulation
file. To proceed type F3 or edit circuit symbol from the file menu. Simply drw a npn
transistor and come back to the schematic by re-pressing F3.

324

Figure 11.6: SOT343R package description

325

Figure 11.7: die connection if the fifth generation transistor from philips

326

Figure 11.8: bfg425W in sot343R package description

327

11.5 small signal S parameter verification

In this section we will need to redraw a new schematics using the model we have created,
plus some extra components to place the measurements ports 2.
You should have a schematics like the one mentionned in fig11.9.

Figure 11.9: schematics used for S parameters simulation

The components used to verify the model could be strange (inductor of 1H and capacitor
of 1F) It is normal since we need to have a very wide band response on the circuit, and
since we want to caracterize only the active device, and compare with the datasheet. An
other way is to use DC bloc or DC feed or bias Tee to provide the power supply to the
component. This is the right way to do it.
you should then create a display to visualize the S parameters : generally s11 and s22 are
in the smith and s12 and s21 are in polar
We have now to compare these results with the measured parameters from philips :

! Filename: 225bfg425.001

! BFG425W Field C1

! V1=8.667E-001V,V2=2.000E+000V, I1=3.585E-004A, I2=2.496E-002A

! S11 S21 S12 S22

!Freq(GHz) Mag Ang Mag Ang Mag Ang Mag Ang

GHz S MA R 50

0.040 0.325 -8.696 38.472 173.381 0.002 71.865 0.923 -3.072

0.100 0.331 -23.004 37.457 164.549 0.005 83.280 0.915 -9.551

2We will another method when we will use the device in a real project

328

Figure 11.10: S parameters simulation for model verification

329

0.200 0.315 -44.455 34.771 150.487 0.008 75.947 0.863 -18.965

0.300 0.296 -63.008 31.364 138.811 0.012 71.608 0.794 -26.449

0.400 0.278 -79.654 27.951 128.829 0.015 68.186 0.725 -32.076

0.500 0.265 -94.339 24.856 120.248 0.017 65.974 0.664 -36.332

0.600 0.254 -106.508 22.159 113.362 0.020 64.514 0.613 -39.533

0.700 0.246 -116.820 19.885 107.530 0.022 63.362 0.569 -42.071

0.800 0.240 -126.472 17.964 102.255 0.024 62.701 0.533 -44.121

0.900 0.235 -134.500 16.345 97.645 0.027 61.910 0.504 -45.968

1.000 0.232 -141.743 14.958 93.487 0.029 61.280 0.479 -47.614

1.100 0.230 -148.265 13.770 89.661 0.031 60.570 0.457 -49.172

1.200 0.230 -154.216 12.748 86.091 0.033 59.878 0.438 -50.696

1.300 0.230 -159.761 11.850 82.773 0.036 59.238 0.421 -52.103

1.400 0.231 -164.776 11.070 79.671 0.038 58.509 0.406 -53.483

1.500 0.233 -169.782 10.383 76.687 0.040 57.719 0.392 -54.842

1.600 0.234 -174.382 9.766 73.821 0.043 56.846 0.380 -56.285

1.700 0.236 -178.496 9.213 71.086 0.045 56.001 0.369 -57.740

1.800 0.238 177.334 8.725 68.404 0.047 54.999 0.358 -59.199

1.900 0.241 173.487 8.277 65.836 0.050 53.983 0.348 -60.790

2.000 0.244 169.856 7.874 63.295 0.052 52.923 0.338 -62.399

2.200 0.251 162.836 7.172 58.413 0.057 50.729 0.319 -65.657

2.400 0.259 156.208 6.578 53.682 0.062 48.414 0.301 -68.988

2.600 0.268 150.081 6.068 49.042 0.067 45.958 0.283 -72.558

2.800 0.277 144.221 5.628 44.575 0.072 43.380 0.266 -76.167

3.000 0.288 138.650 5.244 40.174 0.077 40.713 0.248 -80.054

3.500 0.319 125.843 4.470 29.452 0.090 33.634 0.204 -90.648

4.000 0.352 113.999 3.873 18.944 0.102 26.177 0.158 -103.541

4.500 0.389 103.406 3.406 8.713 0.113 18.415 0.113 -121.590

5.000 0.431 92.903 3.011 -1.792 0.123 9.782 0.071 -156.899

5.500 0.463 82.559 2.658 -11.364 0.131 2.534 0.054 148.652

6.000 0.506 73.164 2.374 -21.684 0.138 -6.413 0.095 100.575

6.500 0.516 66.705 2.179 -28.681 0.152 -10.089 0.112 92.309

7.000 0.551 59.664 2.011 -37.894 0.164 -17.920 0.164 82.321

7.500 0.610 50.773 1.808 -49.313 0.166 -29.630 0.246 65.957

8.000 0.644 43.502 1.653 -58.585 0.172 -37.580 0.300 56.971

8.500 0.683 35.816 1.496 -68.478 0.175 -46.984 0.361 47.167

9.000 0.709 27.972 1.338 -77.310 0.173 -55.176 0.412 37.289

9.500 0.736 20.858 1.212 -85.841 0.172 -63.448 0.449 29.117

10.000 0.764 14.187 1.105 -95.600 0.173 -72.751 0.505 22.602

10.500 0.785 7.330 0.997 -104.961 0.171 -81.774 0.554 14.956

11.000 0.802 0.219 0.884 -113.744 0.164 -91.275 0.593 6.422

11.500 0.815 -6.751 0.791 -122.965 0.158 -100.952 0.631 -0.521

12.000 0.822 -13.843 0.690 -131.882 0.149 -111.108 0.667 -8.548

! DEEMBEDDED NOISE DATA

330

!FREQUENCY FMIN GAMMA OPT Rn

! (GHz) (dB) Mag Ang (NORMALIZED)

Using these parameter, we shoul compare on the sample display the modelised results and
the measurements results, or directly show the error using equations. First we compare
the results.

Figure 11.11: schematics used for S parameters from manufacturer

In the display that is used for the S parameters that we have simulated from our modelisa-
tion, you can add the results from the meaurements files by adding a measurement of Si,j
using the right dataset with the combo box. You should obtain the difference between the
two.
By doing this, you should obtain the results presented in the figure 11.12.

IMPORTANT NOTE : The differences, you should obtain are still on investigation for
now.

331

Figure 11.12: Results from model and from meaures compared together

332

12 Power Amplifier Design

warning

This chapter will describe an RF design issue using QUCS. The author assume that the
basic manipulation of qucs is known. You will find herein mainly a MacOsX description
that is close to a linux or unices architecture.

12.1 Field of interest

This power amplifier will be used in a more complex system taht I can not describe herein,
but the application is inside the 868MHz ISM frequency band. This amplifier is considered
as power amplifier since it is not a LNA, but its power is not very high as well as you can
see in the following system specification. It is more a low input power amplifier driving
relatively low current. An application note with really high power level such several watts
will be an other chapter.

12.2 System consideration

As a system point of view we need first to specify what kind of function we need. this
function will be defined as mentionned in table 12.1.

Table 12.1: System specification for the design of a PA

parameter description min typ max unit

Fo frequency of operation 863 868.6 870 MHz
Icc current consumption 20 25 mA
Zin input impedance 50 Ω
Zout output impedance 50 Ω
Pin input power −15 −10 −8 dBm
Pout input power 5 10 12 dBm
Vcc DC supply voltage 2.45 2.5 2.55 V

333

Cost issue is very important, therefore only one active component is allowed, and the BOM
1 should be reduced as much as possible.

This design should work on a FR4 PCB used in a production line. The parameters of
such substrate is quite uncontrolled but can be caracterized, as long as you keep the same
supplier (avoid strange suppliers who can change the FR4 composition without notice).
As mentionned previously you can describe a substrate inside the library with the following
lines :

<SUBST FR4_ 1 0 0 -30 24 0 0

"4.7" 1 "0.7 mm" 1 "35 um" 1 "2e-4" 1 "0.022e-6" 1 "0.15e-6" 1

>

The height of the substrate is 0.7mm but this describe only one RF layer of the full
implementation of the circuit which is a four layour board. The two inner layer are power
and ground, the top and bottom layer are RF layers.

12.3 Biasing consideration

In this section we will see how the biasing is made, especially using a emitter feed back
technic. If you remember well the data sheet of the transistor, there is a huge dispersion
on the hFE, and some other dispersion have to be taken into account : resistance, supply
voltage,
The used schematics is shown is fig 12.1. But we need to evaluate the component first.
Using small calculus it is easy to figure out the different resistance :
assuming that

Ic = βIb (12.1)

IbiasBridge � Ib (12.2)

IbiasBridge =
Ic
10

(12.3)

Re =
Vcc − Vce

Ic
(12.4)

R1 +R2 =
10× Vcc

Ic
(12.5)

R2 =
10

Ic
× (Vcc − Vce + Vbe) (12.6)

The inputs are :

1Bill Of Material

334

Figure 12.1: Schematics used for this study

335

• Vcc = 2.5V

• Vbe = 0.412V

• Ic = 15mA

the results are :

• R1 = 1KΩ

• R2 = 600Ω

• Re = 33Ω

Using these values on the schematics, we can now see the stability of the design. Adding
the fact that the voltage regulator used in this case has an ondulation of 5 mV in the
working domain. You need to simulate the DC schematics by modifying the BF parameter
of the transistor from 50 to 120 (since this feature is not enabled in the current version of
Qucs 0.0.7).

Table 12.2: Variation of Ic in mA, due to the Vcc and β

Vcc vs β 50 80 120
2.45 12.21 13.34 14.07
2.50 12.62 13.78 14.54
2.55 13.03 14.23 15.01

From this table we can extract some stability factor :

∆Icc
∆V
|β=80 = 8.9µA/mV (12.7)

∆Icc
∆β
|Vcc=2.5 = 30µA (12.8)

∆Icc
∆T
|β=seenote,Vcc=2.5 = . . . µA/C (12.9)

Note : For the temperature dependance, we need to take the minimum β for the minimum
temperature, and the maximum β for the maximum temperature.

336

12.4 Why thermal design ?

The objective of the thermal design in electronic equipment is to provide as low a temper-
ature rise, ∆T, above ambiant as is practical for a product’s electronic components.
As a practical matter, a small 3C to 5C component temperature rise is almost unavoidable,
and actually has been found to be desirable. If the rise is less than that, there can be more
moistrure-related problems, particularly corrosion and electrical leakage currents.

• Improves performance : avoids calibration drift, maintains phase lock loops, stabilizes
gain, ...

• Improves reliability : failure mechanisms accelerate rapidly at higher temperatures
through metal migration, increased ion mobility, ...

In most electronic components, the failure rate doubles for a 10C to 15C rise in
temperature and the slope is exponential ! temperature cycling is even worse.

Temperature rise is particularly hard on components which depend on an internal
liquid, such as electrolytic capacitor, batteries, and lubricated bearings.

Sophisticated thermal design is becoming a necessity as devices becomes smaller and
poxer density increase. Examples : VLSICs and surface mount technology SMT.

• Improves life : higher ∆T increases mechanical stress, failures of connections, metal-
isation contacts,...

12.4.1 Thermal management

The objective of thermal management is to design the internal thermal environment of
the electronic equipment so the equipment performance will meet customer expectations.
Within the range of environmental conditions where the equipment is expected to operate,
the equipment should perform within specifications and operate reliably. In general, the
designer has little control over the external environment, so he must design for an antici-
pated range. He does have more control over the internal environment, but his attention
should be directed toward the ultimate goal ; maintaining a suitable environment for the
critical components.
Analysis of the thermal environment can usually be divided into several distinct parts be-
cause of almost–isothermal boundaries. Consider the typical enclosure system, the isother-
mal boundaries are :

• the enclosure at Te

• the interior at Tb

• the component at Tc

Because of these boundaries, ∆Tjc, ∆Tca and ∆Tja can be solved independently. ∆Tae and
∆Te∞ can also be solved independently for a sealed enclosure, but are inter–dependent for
a vented or forced air cooled enclosure.

337

approching the problem During the definition stage of a product, the choice of enclosure
is sometimes dictated by a competitor, the customer, or marketing. Frequently the choice
is ”as small as possible”, thus unwittingly passing judgment on a particular choice, it is
possible to make a thermal analysis of the proposed enclosure. If the environment created
for the component is unsuitable, then additional cooling mechanisms must be developped.

One approch is to simplify the problem to one dimensionnal analysis. Heat energy sources
azre assumed to be evenly distributed throughout the volume. The enclosure surface
is assumed to be isothermal. The enclosure is assuemd to made of a perfect thermal
conductor. (unfortunately, enclosures are more and more being made of plastic, a thermal
insulator, which complicates this sample approch).

The external environment is considered to be the walls of a large room of surface emissivity
, ε , of 1.0 at the same temperature, T∞, as the surrounding air, and is capable of absorbing
an infinite amount of heat energy.

Heat transfert by conduction, radiation, free convection, venting, and forced convection
are basically representated by the equation :

Qt = Qk +Qr +Qc +Qv +Qf (12.10)

The most elusive component, thermal resistance Θx, can vary from simple to very complex.
Fortunately, most electronic enclosures do not have more than three cooling paths and in
many cases, the third path is minor one that can be neglected for ease of calculation.

The following are some generally accepted guidelines that can be used to quickly evaluate
a design or configuration. These were obtained from notes provided by [?].

Maximum power density :

• for small painted uniformly heated sealed enclosure

– naturally cooled < 4mW/cm3

– taller than 60cm < 2mW/cm3

• for naturally cooled printed circuit boards < 16mW/cm2

• for forced air cooled printed circuit board < 110mW/cm2

• for small (60cm or less) induced draft cooled enclosure < 20mW/cm3

forced air velocities :

• for PCB cages > 4m/sec

• for enclosures < 7.6m/sec

338

12.5 DC Power dissipation

An important issue in power amplifier design is the power dissipation. Even if in this
particular case the power dissipation is not that obvious, it is nice to see how we can
handle this anyway.

As a student you always learn that you can apply kirchoff law on temperature. This only
thing you have to know is the correspondance :

The temperature : is equivalent to the voltage

The power : is equivalent to the current

The thermal resistance : is equivalent to the resistance

You can also take into account some calorific capacity, and perturbation from near effect
due to the presence of other source of heating, in a dynamic design, but we will only see
the DC power dissipation here . . . from this start point you can then imagine whatever you
want.

In order to proceed, we need to create a model for this power dissipation. This model can
be very simple on its comprehension but very complex since all the parameters are not well
known. Therefore we will need to reduce the level of modelisation that is used.
Here are the input parameters :

• The DC power dissipation is 15mA× 2.5V olts = 37.5mW

• the thermal resistance of the device is θjunctionsolder = 350degC/W

• the thermal resistance of the ambiante is θthpcbair = 22degC/W

• the ambiante temperature varies from −25degC to 75degC and 25degC typical

The schematics used for this simulation is shown is figure 12.22.

2Note the possiblity to place the results of the simulation directly on the schematics, and some comments
on the schematics such as document name, revision, and so on.

339

Figure 12.2: Schematics used to simulate the DC power dissipation

340

12.6 Small signal analysis

The current version of QUCS do not include an Harmonic Balance solver, so we need to
do some other simualtions in order to have some ideas on the performances of our design.

341

13 Low Noise Amplifier Design

This section will describe a two stage LNA. The main goal is to see how we can design
this LNA using the QUCS software, but also to find innovative designs for low power 1

solutions.

The main difference between as you should know, between PA and LNA, is that in the
design of a LNA the noise factor is crucial, and therefore a trade off has to be made with the
gain design. This design rule is well explained in all RF courses, so I will go straightforward
to the solution by explaining the ”pie” but not the ”recipie” !

As mentionned earlier, a particular attention will be placed on the DC study, since the
overall current consumtion is a crucial point, and the noise factor that we could have.

13.0.1 System consideration

As a system point of view we need first to specify what kind of function we need. this
function will be defined as mentionned in table 13.1.

Table 13.1: System specification for the design of a LNA

parameter description min typ max unit

Fo frequency of operation 863 868.6 870 MHz
Icc current consumption 0.5 1 mA
Zin input impedance 50 Ω
Zout output impedance 50 Ω
Pin input power −120 −110 −90 dBm
Vcc DC supply voltage 1.4 1.5 1.6 V

note : for the DC supply voltage, we will have to find the correct ripple that is acceptable
on this design in order to be able to specify the voltage regulator and its PSRR regarding
the other voltage in the design. To proceed, due to the fact that some functionnalities are
still missing on QUCS2 we will use some workaround for the DC study.

1be careful when I usually use the term low power , I mean extremlly low power , below the mA generally
2normal it is still in development . . .

342

13.0.2 Choice of transistor

In order to design a LNA, a particular attention has to be put in the this choice. Therefore
you will need to have a transistor that is well designed for very small current and for LNA
application.
I will use the BFG403AW from philips 3. This transistor belongs to the 5th generation.
To classify directly the different transistors that could be used, the different version
The parameter are the following :

TO BE UPDATED WITH THE CORRECT ONE

.SUBCKT BFG403W 1 2 3

L1 2 5 1.1E-09

L2 1 4 1.1E-09

L3 3 6 0.25E-09

Ccb 4 5 2.0E-15

Cbe 5 6 80.0E-15

Cce 4 6 80.0E-15

Cbpb 5 7 1.45E-13

Cbpc 4 8 1.45E-13

Rsb1 6 7 25

Rsb2 6 8 19

Q1 4 5 6 6 NPN

.MODEL NPN NPN

bla bla bla

bla bla bla

bla bla bla

bla bla bla

bla bla bla

.ENDS

In order to perform some simulation we should input this component in the device library
as mentionned in the chapter on the BJT modeling, and create the schematics thst uses
this device. The parasitic element are the same since the package used is the same as the
BFG425W .

13.0.3 library creation

The major problem in this design is the fact that the needed current on the LNA is not
mentioned in the already measured S parameters from the manufacturer. This is one of the

3I do not have any stock option with philips, but they provide quite easily some prototypes and the
models of their transistors, further more their strategy is to continue to provide small wideband RF
transistor, so why not ?

343

reasons why, we need specicaly a non linear model to describe the transistor. Of course a
preliminary calculus could be done using these regular parameters, but since we need also
some other features such as distortion and so on, a non linear model is mandatory.

In order to conduct these test, we need to create a model of our component. To perform
this you should create or edit the file that contain all the libraries, this file is stored under

/usr/local/share/qucs/library/philips_RF_widebande_npn.lib

You can edit this file with vi. You need to add the following line :

<Qucs Library 0.0.7 "philips RF wideBand">

...

...

...

<Component BFG403W>

<Description>

RF wideband NPN 25GHz

2V, 3mA, 20dB , 2000MHz

Manufacturer: Philips Inc.

NPN complement: BFG403W

based on spice parameter from philips

sept 2005 thierry

</Description>

<Model>

<_BJT T_BFG403W_ 1 480 280 8 -26 0 0 "npn" bla bla bla bla>

</Model>

</Component>

...

...

...

13.0.4 DC study

13.0.5 SP study

13.0.6 Non linearities study

13.0.7 Possible improvement tips

344

14 Microstrip Design

14.1 10dB Directional Coupler Design

The below pictures shows two parallel conductor strips on a dielectric substrate with a
backplane metalization. Both the conductor strips have the width W , the height t and the
length l. There is a finite gap S between the conductors. The substrates height is denoted
by h. With the gap between the conductor strips small enough a capacitive as well as
inductive coupling occurs.

l

W

S

h

1 4

2 3

t

Figure 14.1: microstrip directional coupler

Such a microstrip structure is called “microstrip coupled lines”. Also defined in figure 14.1
the port numbers 1. . . 4.

14.1.1 Some boring theory beforehand

There are two types of directional couplers: backward (coupling from port 1 to port 4) and
forward (coupling from port 1 to port 3) couplers.

The S-parameters of an ideal directional backward coupler are as follows – with C denoting

345

the coupling coefficient.

S21 =
√

1− C2

S41 = C

S31 = 0

S11 = S22 = S33 = S44 = 0

In a three conductor system – as the microstrip coupled lines are – there are two types
of modes: even and odd. Thus such a system is described by odd and even characteristic
impedances (ZL,o and ZL,e) and odd and even effective dielectric constants (εr,eff,o and
εr,eff,e). The characteristic equations for an ideal backward coupler are

εr,eff,e = εr,eff,o

ZL,e 6= ZL,o

and those for an ideal forward coupler are

εr,eff,e 6= εr,eff,o

ZL,e = ZL,o

The S-parameters of the ideal directional forward coupler are as follows.

S21 =
√

1− C2

S31 = C

S41 = 0

S11 = S22 = S33 = S44 = 0

For both ideal – forward and backward – couplers the reflection coefficients are zero. Port
1 is called the injection port. Port 2 is the transmission port. In a backward coupler
port 4 is the coupled port and port 3 is called the isolated port. In a forward coupler
it’s the other way around.

Please note: The given S-parameters for forward and backward couplers are valid for all
side termination of each port with the reference impedance ZL – usually 50Ω.

346

14.1.2 Design equations

In microwave labs backward line couplers are most wide spread. The basic design equations
can be written as

C =
ZL,e − ZL,o
ZL,e + ZL,o

β · l =
π

2
Z2
L = ZL,o ·ZL,e

ZL,e = ZL ·
√

1 + C

1− C

ZL,o = ZL ·
√

1− C
1 + C

With

β · l =
π

2

; l =
π

2 · β
=
π · c
2 ·ω

=
c

4 · f
=
λ

4

the length l of such a coupler is defined by a quarter wavelength. Both the characteristic
impedances can be computed by the reference impedance ZL, i.e. 50Ω, and the coupling
coefficient C.

14.1.3 Applying the design equations

With the previous definitions it’s easy to design the 10dB directional backward coupler.
We have the reference impedance ZL = 50Ω and the coupling coefficient C in dB. First we
linearize the coupling coefficient.

CdB = −10dB

; C = 10CdB/20 = 10−0.5 ≈ 0.316

Now we compute the even and odd impedances.

ZL,e = ZL ·
√

1 + C

1− C
≈ 69.4Ω

ZL,o = ZL ·
√

1− C
1 + C

≈ 36.0Ω

14.1.4 What next?

All grey theory you may think... With the impedances at hand the engineer had to go
into magic diagrams and find physical dimensions of his coupler. But now there is Qucs.
Things get easier.

347

Just select Tools → Line Calculation in the menubar or press Ctrl+3 to start the
transmission line calculator.

Then choose Coupled Microstrip in the Transmission Line Type selection box. Some-
thing likely shown in figure 14.2 should appear.

Figure 14.2: Qucs Transcalc screenshot

Type in the calculated 69.4 in the Z0e field, 36.0 in the Z0o field and 90 in the Ang l
field of the Electrical Parameters panel. The Ang l field denotes the desired electrical
length of the line (remember: 90◦ ' π/2). Choose the Deg unit.

Our selected design frequency is 2GHz. Thus type in this value in the Freq field of the
Component Parameters panel.

Then press the Synthesize button or press F4. The program calculates the physical
parameters W, S and L in the Physical Parameters panel.

Please note: Depending on the substrate (shown in the Substrate Parameters panel)
the calculated values may vary.

348

Finally we got

W = 520µm

S = 199µm

L = 14.93mm

All done with designing... Feel any better?

14.1.5 Verification of the design

Ok. Let’s verify what we have designed so far. Choose Execute → Copy to Clipboard
from the menubar or press F2. This copies the currently shown microstrip coupled line in
Qucs Transcalc into the global clipboard.

Now switch to an empty Qucs schematic and press Ctrl+V. This inserts the previously
entered clipboard content – and click with the left mouse button in order to place the
selection into the schematic. This should give you something likely shown in figure 14.3.

349

Figure 14.3: coupled microstrip lines in a Qucs schematic

Now press the equation button (shown in figure 14.4) in Qucs’s toolbar.

350

Figure 14.4: equation button

Place the equation into the schematic and enter the following equations. Press Add in the
equation dialog (see figure 14.5) to add new equations. Finally press the OK button.

Figure 14.5: equation dialog

Also edit the properties of the MSTC1 component reducing the number of digits. This
will ensure that your technology is able to use these values when (if) they decide to produce
your design.

Now edit the S-parameter simulation properties. You can do that either by double clicking
the component and use the component dialog. Or you can directly click on the values in
the schematic and fill in 0.2 GHz for Start, 4.2 GHz for Stop and 101 for Points.

Finally save your schematic by pressing Ctrl+S. Check whether all looks like as shown in
figure 14.6.

351

P1
Num=1
Z=50 Ohm

P2
Num=2
Z=50 Ohm

P3
Num=3
Z=50 Ohm

P4
Num=4
Z=50 Ohm

SubstTC1
er=9.8
h=0.635 mm
t=17.5 um
tand=0.0001
rho=2.43902e-08
D=1.5e-07

S parameter
simulation

SPTC1
Type=lin
Start=0.2 GHz
Stop=4.2 GHz
Points=101

MSTC1
Subst=SubstTC1
W=0.520 mm
L=14.93 mm
S=0.199 mm

Equation

Eqn1
reflect=dB(S[1,1])
isolated=dB(S[3,1])
through=dB(S[2,1])
coupled=dB(S[4,1])

Figure 14.6: final microstrip coupler schematic

Now select Simulation → Simulate from the menubar or just press F2 to simulate the
schematic.

When the simulation windows disappears then choose a Cartesian diagram from the left
hand selection view and place the diagram into the (yet empty) data display area. Double
click the through, reflect, isolated and coupled data items in order to add it to the
diagram within the diagram dialog as shown in figure 14.7.

352

Figure 14.7: diagram dialog

Press OK to finish the diagram dialog. Afterwards you will see the following diagram.

353

Figure 14.8: microstrip coupler simulation results

14.1.6 Suggested improvements

By use of the diagram dialog (double click the diagram) you may improve1 the data vi-
sualization as you see it fit. I manually fixed the y-axis limits, set markers and set curve
thickness to 2 points. Also I entered a common x-axis label. See figure 14.9 how it looks
now.

1... to feel even better.

354

0 1e9 2e9 3e9 4e9
-50

-40

-30

-20

-10

0

10

frequency / Hz

co
up

le
d

is
ol

at
ed

re
fle

ct
th

ro
ug

h
frequency: 2e+09
coupled: -10.3223
frequency: 2e+09
coupled: -10.3223

frequency: 2e+09
reflect: -32.0135
frequency: 2e+09
reflect: -32.0135

Figure 14.9: directional coupler simulation result diagram

The marker on the coupled curve shows a coupling factor of -10.32 at a frequency of
2GHz (double click marker to change precision of the marker data). This is a bit way off
for which we tried to design it for.

Seems like coupling between the lines is a bit too weak. So we reduce the gap between the
strip conductors S by 16.5µm to be 0.1825 mm and simulate again.

355

0 1e9 2e9 3e9 4e9
-50

-40

-30

-20

-10

0

10

frequency / Hz

co
up

le
d

is
ol

at
ed

re
fle

ct
th

ro
ug

h
frequency: 2e+09
coupled: -10.0062
frequency: 2e+09
coupled: -10.0062

frequency: 2e+09
reflect: -31.6542
frequency: 2e+09
reflect: -31.6542

Figure 14.10: optimized directional coupler simulation result diagram

Finally a perfect2 10dB coupling as shown in figure 14.10.

14.1.7 Remaining thinkabouts

The diagram in figure 14.10 shows a reflection coefficient of about -31.7dB. The isolation
(about -22.2dB) is not as good as planned as well. So – what happened with my design
equations?

Have a look at figure 14.2. In the Calculated Results panel you see ErEff Even and
ErEff Odd differing significantly which is not what we expect from an ideal backward
coupler:

εr,eff,e = εr,eff,o

This “problem” arises from the fact that there are two dieletrica involved: air and the
substrate. Part of the electromagnetic fields cross air and part of them the substrate. You
can inhibit this by a dielectric overlay. It’s more expensive to produce but improves your
results.

2... to feel great.

356

15 Measurement Expressions Reference
Manual

15.1 Introduction

This manual describes the measurement expressions available in ”Qucs”, the ”Quite Uni-
versal Circuit Simulator”.

Measurement expressions come into play whenever the results of a ”Qucs” simulation run
need post processing. Examples would be the conversion of a simulated voltage waveform
from volts to dBV, the root mean square value of that waveform or the determination of
the peak voltage. The ”Qucs” measurement functions offer a rich set of data manipulation
tools.

If you are not familiar with the way how to enter those formulas, please refer to chapter
“Using Measurement Expressions”, which points out the possibilities to create and change
measurement expressions. Also the data types supported are specified here. Chapter
“Functions Syntax and Overview” introduces the basic syntax of functions and a categorical
list of all functions available. The core of the document, a detailed compilation of all ”Qucs”
functions divided into different categories, is presented in chapter “Math Functions” and
chapter “Electronics Functions”. Finally, the appendix contains an alphabetical list of all
functions.

15.2 Using Measurement Expressions

The chapter describes the usage of mathematical expressions for post processing simulation
data in “Qucs”, how to enter formulas and modifying them. It gives a brief description of
the overall syntax of those expressions.

357

15.2.1 Entering Measurement Expressions

Measurement expressions generate new datasets by function or operator driven evaluation
of simulation results. Those new datasets are accessible in the data display tab after
simulation. The related equations can be entered into the schematic editor by the following
means:

• Using the equation icon in the “Tools” bar (see fig. 15.1)

• Using menu item “Insert”→ ”Insert equation”

Figure 15.1: Entering a new measurement expression via equation icon

You can now place the equation symbol by mouse click anywhere in the schematic. Each
mouse click creates a new equation instance each consisting of a variable number of mea-
surement expressions. Press the Esc key if you do not like further equations.

Another option is to select an existing equation, copy it (either by menu item “Edit”→
”Copy” or by Ctrl + C 1) and paste it (either by menu item “Edit”→ ”Paste” or by Ctrl

+ V).

After having successfully created an equation instance, you are now able to modify it.

1 Ctrl + C means that you have to press the Ctrl key and the C key simultaneously.

358

15.2.2 Changing Measurement Expressions

For sake of simplicity we assume that you have just generated a new equation - if you like
to change an existing, more complicated equation the following steps are the same.

Thus, the excerpt of your schematic surface looks like that in fig. 15.2.

Figure 15.2: Newly created equation

You can now manipulate the current name of the equation instance. Simply click onto
“Eqn1”, which becomes highlighted. Then type in a new name for it and finalise your
inputs with the Enter key.

After that, you can enter a new equation. Again, click onto “y=1”. Only the “1” is marked,
and you can enter a new expression there. Please use the variables, operators and constants
described in chapter “Syntax of Measurement Expressions”. Note that you can also refer
to results (dependents) of other equations. But how to change the name of the current
dependent “y”? Right click onto the equation, and a context menu opens. Select the first
item called “Edit properties”. A sub window appears, which should look like the one in fig.
15.3. The alternative for entering equations is to double click onto the equation.

You can now change the name of the dependent, the equation itself (which is “1” in the
example shown) and the name of the equation. If you do not want the result to be exported
into the data display tab, but temporarily need it for further calculations, select “no” in
the “Export value” cell.

15.2.3 Syntax of Measurement Expressions

Function names, variable names, and constant names are all case sensitive in measurement
expressions - it is distinguished between lowercase and uppercase letters such as ’a’ and
’A’.

In functions, commas are used to separate arguments.

359

Figure 15.3: Editing equation properties

Variable Names

User defined variable names consist of a letter, followed by any number of letters, digits,
or underscores.

The syntax of variable names created by the ”Qucs” simulator is as specified in table 15.1.
Please note that all voltages and currents in“Qucs”are peak values except the noise voltages
and currents which are rms values at 1Hz bandwidth.

Numbers

Numbers are written in conventional decimal way, with an optional decimal point between
the digits. For powers of ten, the familiar scientific notation with an ’e’ is used. In this way,
’1.234e6’ is an example for the real floating point number 1234000. Imaginary numbers
can be entered by a multiplication factor ’i’ or ’j’ (see also table 15.2). An example would
be ’1+2*i’ or - if you want to leave out the multiplication sign - ’1+i2’.

Built-in constants

The constants which can be used within measurement expressions are given in table 15.2.

360

Variable Name Description

nodename.V DC voltage at node nodename
name.I DC current through circuit component name

nodename.v AC voltage at node nodename
name.i AC current through circuit component name

nodename.vn AC noise voltage at node nodename
name.in AC noise current through circuit component name

nodename.Vt Transient voltage at node nodename
name.It Transient current through circuit component name

name.OP name = component name, OP = operating point (device dependent),
e.g. D1.Id

S[x,y] S-parameter, e.g. S[1,1]
Rn equivalent noise resistance

Sopt optimal reflection coefficient for minimum noise
Fmin minimum noise figure

F noise figure
nodename.Vb Harmonic balance voltage at node nodename

Table 15.1: Syntax of simulator generated variable names

Constant Description Value

e Euler’s constant 2.718282

i , j Imaginary unit
(√
−1
)

i1
kB Boltzmann’s constant 1.380658e23 J/K
pi π 3.141593

Table 15.2: Built-in Constants

Operators

Operator Precedence Expressions are evaluated in the standard way, meaning from left
to right, unless there are parentheses. The priority of operators is also handled familiarly,
thus for example multiplication has precedence to addition. Table 15.3 specifies a sorted
list of all operators, the topmost having highest priority. Operators on the same line have
the same precedence.

Ranges The general nomenclature of ranges is displayed in table 15.4. It shows one-
dimensional ranges, whereas also n-dimensional ranges are possible, if you consider nested
sweeps.

361

Operator Name Example

() Parentheses, function call max(v)
ˆ Exponentiation 3ˆ4
* Multiplication 3*4
/ Division 3/4
% Modulo 4%3
+ Addition 3+4
- Subtraction 3-4
: Range operator 3:12

Table 15.3: Operator priorities

Syntax Explanation

m:n Range from index m to index n
:n Range up to index n
m: Range starting from index m
: No range limitations

Table 15.4: Range definition

Post Processing of Simulation Data by Expressions

After a simulation has run the results are stored in datasets. Usually, such a dataset is
a vector or a matrix, but may also be a real or complex scalar. For transient analysis,
this dataset contains voltage or current information over time, for Harmonic Balance it
contains amplitudes at dedicated frequencies, while for S-parameter analysis a vector of
matrices (thus matrices in dependency of frequency) is returned. In further generalisation
the components of vectors and matrices consist of complex numbers.

Additionally, datasets can be generated by using expressions. As an example the linspace()
function shall be named, which creates a vector of linearly spaced elements.

15.3 Functions Syntax and Overview

This chapter introduces the basic syntax of the function descriptions and contains a cate-
gorical list of all available functions.

362

15.3.1 Functions Reference Format

”Qucs” provides a rich set of functions, which can be used to generate and display new
datasets by function based evaluation of simulation results. Beside a large number of
mathematical standard functions such as square root (sqrt), exponential function (exp),
absolute value (abs), functions especially useful for calculation and transformation of elec-
tronic values are implemented. Examples for the latter would be the conversion from
Watts to dBm, the generation of noise circles in an amplifier design, or the conversion from
S-parameters to Y-parameters.

Functions Reference Format

In the subsequent two chapters, each function is described using the following structure:

<Function Name>

Outlines briefly the functionality of the function.

Syntax

Defines the general syntax of this function.

Arguments

Name, type, definition range and whether the argument is optional, are tabulated here. In
case of an optional parameter the default value is specified. “Type” is a list defining the
arguments allowed and may contain the following symbols:

Symbol Description

R Real number
C Complex number
Rn Vector consisting of n real elements
Cn Vector consisting of n complex elements

Rm×n Real matrix consisting of m rows and n columns
Cm×n Complex matrix consisting of m rows and n columns

Rm×n×p Vector of p real m× n matrices
Cm×n×p Vector of p complex m× n matrices

“Definition range” specifies the allowed range. Each range is introduced by a bracket, either
“[” or “]”, meaning that the following start value of the range is either included or excluded.

363

The start value is separated from the end value by a comma. Then the end value follows,
finished by a bracket again, either “[” or “]”. The first bracket mentioned means “excluding
the end value”, the second means “including”.

If a range is given for a complex number, this specifies the real or imaginary value of that
number. If a range is given for a real or complex vector or matrix, this specifies the real
or imaginary value of each element of that vector or matrix. The symbols mean “includes
listed value” and “excludes listed value”.

Description

Gives a more detailed description on what the function does and what it returns. In case
some background knowledge is presented.

Examples

Shows an application of the function by one or several simple examples.

See also

Shows links to related functions. A mouse click onto the desired link leads to an immediate
jump to that function.

15.3.2 Functions Listed by Category

This compilation shows all “Qucs” functions sorted by category. Please click on the desired
function to go to its detailed description.

Math Functions

Vectors and Matrices: Creation

eye() ... Creates n x n identity matrix
linspace() ... Creates a real vector with linearly spaced components
logspace() ... Creates a real vector with logarithmically spaced components

364

Vectors and Matrices: Basic Matrix Functions

adjoint() ... Adjoint matrix
array() ... Read out single elements

det() ... Determinant of a matrix
inverse() ... Matrix inverse

transpose() ... Matrix transpose

Elementary Mathematical Functions: Basic Real and Complex Functions

abs() ... Absolute value
angle() ... Phase angle in radians of a complex number. Synonym for “arg”

arg() ... Phase angle in radians of a complex number
conj() ... Conjugate of a complex number

deg2rad() ... Converts phase from degrees into radians
imag() ... Imaginary value of a complex number
mag() ... Magnitude of a complex number

norm() ... Square of the absolute value of a vector
phase() ... Phase angle in degrees of a complex number
polar() ... Transform from polar coordinates into complex number

rad2deg() ... Converts phase from degrees into radians
real() ... Real value of a complex number

signum() ... Signum function
sign() ... Sign function
sqr() ... Square of a number

sqrt() ... Square root
unwrap() ... Unwraps a phase vector in radians

Elementary Mathematical Functions: Exponential and Logarithmic Functions

exp() ... Exponential function
log10() ... Decimal logarithm
log2() ... Binary logarithm

ln() ... Natural logarithm (base e)

365

Elementary Mathematical Functions: Trigonometry

cos() ... Cosine function
cosec() ... Cosecant

cot() ... Cotangent function
sec() ... Secant
sin() ... Sine function
tan() ... Tangent function

Elementary Mathematical Functions: Inverse Trigonometric Functions

arccos() ... Arc cosine (also known as “inverse cosine”)
arccot() ... Arc cotangent
arcsin() ... Arc sine (also known as “inverse sine”)
arctan() ... Arc tangent (also known as “inverse tangent”)

Elementary Mathematical Functions: Hyperbolic Functions

cosh() ... Hyperbolic cosine
cosech() ... Hyperbolic cosecant

coth() ... Hyperbolic cotangent
sech() ... Hyperbolic secant
sinh() ... Hyperbolic sine
tanh() ... Hyperbolic tangent

Elementary Mathematical Functions: Inverse Hyperbolic Functions

arcosh() ... Hyperbolic area cosine
arcoth() ... Hyperbolic area cotangent
arsinh() ... Hyperbolic area sine
artanh() ... Hyperbolic area tangent

Elementary Mathematical Functions: Rounding

ceil() ... Round to the next higher integer
fix() ... Truncate decimal places from real number

floor() ... Round to the next lower integer
round() ... Round to nearest integer

366

Elementary Mathematical Functions: Special Mathematical Functions

besseli0() ... Modified Bessel function of order zero
besselj() ... Bessel function of n-th order
bessely() ... Bessel function of second kind and n-th order

erf() ... Error function
erfc() ... Complementary error function

erfinv() ... Inverse error function
erfcinv() ... Inverse complementary error function

sinc() ... Sinc function
step() ... Step function

Data Analysis: Basic Statistics

avg() ... Average of vector elements
cumavg() ... Cumulative average of vector elements

max() ... Maximum value
min() ... Minimum value
rms() ... Root Mean Square of vector elements

runavg() ... Running average of vector elements
stddev() ... Standard deviation of vector elements

variance() ... Variance of vector elements

Data Analysis: Basic Operation

cumprod() ... Cumulative product of vector elements
cumsum() ... Cumulative sum of vector elements

interpolate() ... Equidistant spline interpolation of data vector
prod() ... Product of vector elements
sum() ... Sum of vector elements

xvalue() ... Returns x-value which is associated with the y-value nearest to a
specified y-value in a given vector

yvalue() ... Returns y-value of a given vector which is located nearest to the
specified x-value

Data Analysis: Differentiation and Integration

diff() ... Differentiate vector with respect to another vector
integrate() ... Integrate vector

367

Data Analysis: Signal Processing

dft() ... Discrete Fourier Transform
fft() ... Fast Fourier Transform

idft() ... Inverse Discrete Fourier Transform
ifft() ... Inverse Fast Fourier Transform

Time2Freq() ... Interpreted Discrete Fourier Transform
Freq2Time() ... Interpreted Inverse Discrete Fourier Transform

kbd() ... Kaiser-Bessel derived window

Electronics Functions

Unit Conversion

dB() ... dB value
dbm() ... Convert voltage to power in dBm

dbm2w() ... Convert power in dBm to power in Watts
w2dbm() ... Convert power in Watts to power in dBm

Reflection Coefficients and VSWR

rtoswr() ... Converts reflection coefficient to voltage standing wave ratio (VSWR)
rtoy() ... Converts reflection coefficient to admittance
rtoz() ... Converts reflection coefficient to impedance
ytor() ... Converts admittance to reflection coefficient
ztor() ... Converts impedance to reflection coefficient

N-Port Matrix Conversions

stos() ... Converts S-parameter matrix to S-parameter matrix with different
reference impedance(s)

stoy() ... Converts S-parameter matrix to Y-parameter matrix
stoz() ... Converts S-parameter matrix to Z-parameter matrix

twoport() ... Converts a two-port matrix from one representation into another
ytos() ... Converts Y-parameter matrix to S-parameter matrix
ytoz() ... Converts Y-parameter matrix to Z-parameter matrix
ztos() ... Converts Z-parameter matrix to S-parameter matrix
ztoy() ... Converts Z-parameter matrix to Y-parameter matrix

368

Amplifiers

GaCircle() ... Circle(s) with constant available power gain Ga in the source plane
GpCircle() ... Circle(s) with constant operating power gain Gp in the load plane

Mu() ... Mu stability factor of a two-port S-parameter matrix
Mu2() ... Mu’ stability factor of a two-port S-parameter matrix

NoiseCircle() ... Generates circle(s) with constant Noise Figure(s)
PlotVs() ... Returns a data item based upon vector or matrix vector with

dependency on a given vector
Rollet() ... Rollet stability factor of a two-port S-parameter matrix

StabCircleL() ... Stability circle in the load plane
StabCircleS() ... Stability circle in the source plane

15.4 Math Functions

15.4.1 Vectors and Matrices

Creation

eye()

Creates n x n identity matrix.

Syntax

y=eye(n)

Arguments

Name Type Def. Range Required

n N [1,+∞[
√

Description

This function creates the n x n identity matrix, that is

369


1 0 · · · 0 0
0 1 0 · · · 0
... 0

. . . 0
...

0 · · · 0 1 0
0 0 · · · 0 1


Example

y=eye(2) returns
1 0
0 1

.

See also

370

linspace()

Creates a real vector with linearly spaced components.

Syntax

y=linspace(xs,xe,n)

Arguments

Name Type Def. Range Required

xs R]−∞,+∞[
√

xe R]−∞,+∞[
√

n N [2,+∞[
√

Description

This function creates a real vector with n linearly spaced components. The first component
is xs, the last one is xe.

Example

y=linspace(1,2,3) returns 1, 1.5, 2.

See also

logspace()

371

logspace()

Creates a real vector with logarithmically spaced components.

Syntax

y=logspace(xs,xe,n)

Arguments

Name Type Def. Range Required

xs R]−∞,+∞[
√

xe R]−∞,+∞[
√

n N [2,+∞[
√

Description

This function creates a real vector with n logarithmically spaced components. The first
component is xs, the last one is xe.

Example

y=logspace(1,2,3) returns 1, 1.41, 2.

See also

linspace()

372

Basic Matrix Functions

adjoint()

Adjoint matrix.

Syntax

Y=adjoint(X)

Arguments

Name Type Def. Range Required

X Rm×n,Cm×n, Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function calculates the adjoint matrix Y of a matrix X :

Y = XH = (X∗)T , where X∗ is the complex conjugate matrix of X and XT is the trans-
posed of the matrix X.

Example

X=eye(2)*(3+i) returns
3+j1 0

0 3+j1
. Then,

Y=adjoint(X) returns
3-j1 0

0 3-j1
.

See also

transpose(), conj()

373

array()

Read out single elements.

Syntax

The “array()” function is an implicit command. Thus normally the respective first expres-
sion (”preferred”) is used.

Syntax Preferred Alternative Preferred Alternative

1 y=VM[i,j] y=array(VM,i,j)
2 y=M[i,j] y=array(M,i,j)
3 y=VM[k] y=array(VM,k)
4 y=v[i] y=array(v,i) y=v[r] y=array(v,r)
5 y=v[i,r] y=array(v,i,r) y=v[r,j] y=array(v,r,j)

y=v[i,j] y=array(v,i,j) y=v[r1,r2] y=array(v,r1,r2)
6 y=s[i] y=array(s,i)

Arguments

Name Type Def. Range Required

VM Rm×n×p, Cm×n×p]−∞,+∞[
√

(Syntax 1 and 3)
M Rm×n,Cm×n]−∞,+∞[

√
(Syntax 2)

v Rn,Cn]−∞,+∞[
√

(Syntax 4 and 5)
r, r1, r2 Rangexs : xe 0 ≤ xs ≤ n− 1, xs ≤ xe ≤ n− 1

√
(Syntax 4 and 5)

i N 0 ≤ i ≤ m− 1
√

(Syntax 1, 2, 4, 5, 6)
j N 0 ≤ j ≤ n− 1

√
(Syntax 1, 2, 5)

k N 0 ≤ k ≤ p− 1
√

(Syntax 3)
s String Arbitrary characters

√
(Syntax 6)

Description

This function reads out real or complex vectors of matrices, matrices and vectors or strings.
Please refer to the following table for the return values:

374

Syntax Argument 1 Argument 2 Argument 3 Result

y=VM[i,j] VM = (xijk) i ∈ N j ∈ N Vector
(xij1, · · · , xijK)

y=M[i,j] M = (xij) i ∈ N j ∈ N Number xij
y=VM[k] VM = (xijk) k ∈ N Matrix x11k · · · x1nk

...
. . .

...
xm1k · · · xmnk


y=v[i] v = (vi) i ∈ N Number vi
y=v[xs:xe] v = (vi) xs, . . . , xe Vector

(vxs, · · · , vxe)
y=v[i,xs:xe] v = (vi) i ∈ N xs, . . . , xe Vector

(vxs, · · · , vxe)
y=v[xs:xe,j] v = (vi) xs, . . . , xe xs, . . . , xe Vector

(vxs, · · · , vxe)
y=v[i,j] v = (vi) i ∈ N xs, . . . , xe Vector

(vxs, · · · , vxe)
y=v[xs1:xe1,
xs2:xe2]

v = (vi) xs1, . . . , xe1 xs2, . . . , xe2 Vector
(vxs, · · · , vxe)

y=s[i] s = (si) i ∈ N Character si

Again, v denotes a vector, M a matrix, VM a vector of matrices, s a vector of characters
and xs, xs1, xs2, xe, xe1, xe2 are range limiters.

Example

v=linspace(1,2,4) returns 1, 1.33, 1.67, 2. Then,

y=v[3] returns 2.

See also

375

det()

Determinant of a matrix.

Syntax

y=det(X)

Arguments

Name Type Def. Range Required

X Rn×n,Cn×n, Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function calculates the determinant of a quadratical n x n matrix X. The result is
either a real or a complex number.

Example

X=eye(2)*3 returns
3 0
0 3

. Then,

y=det(X) returns 9.

See also

eye()

376

inverse()

Matrix inverse.

Syntax

Y=inverse(X)

Arguments

Name Type Def. Range Required

X Rn×n,Cn×n, Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function inverts a quadratical n x n matrix X. The generated inverted matrix Y fulfills
the equation

X ·Y = X ·X−1 = 1, where “ · ” denotes matrix multiplication and “1” the identity matrix.

The matrix X must be regular, that means that its determinant ∆ 6= 0.

Example

X=eye(2)*3 returns
3 0
0 3

. Then,

Y=inverse(X) returns
0.333 0

0 0.333
.

See also

transpose(), eye(), det()

377

transpose()

Matrix transpose.

Syntax

Y=transpose(X)

Arguments

Name Type Def. Range Required

X Rm×n,Cm×n, Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function transposes a m x n matrix X, which is equivalent to exchanging rows and
columns according to

Y = XT = (xij)
T = (xji) with 1 ≤ i ≤ m, 1 ≤ j ≤ n

The generated matrix Y is a n x m matrix.

Example

X=eye(2)*3 returns
3 0
0 3

. Then,

Y=transpose(X) returns
3 0
0 3

.

See also

eye(), inverse()

378

15.4.2 Elementary Mathematical Functions

Basic Real and Complex Functions

abs()

Absolute value.

Syntax

y=abs(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn, Rm×n,Cm×n, Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function calculates the absolute value of a real or complex number, vector or matrix.

For x ∈ R: y =

{
x for x ≥ 0
−x for x < 0

For C 3 x := a+ i b ∧ a, b ∈ R: y =
√
a2 + b2

For x being a vector or a matrix the two equations above are applied to the components
of x.

Examples

y=abs(-3) returns 3,

y=abs(-3+4*i) returns 5.

See also

mag(), norm(), real(), imag(), conj(), phase(), arg()

379

angle()

Phase angle in radians of a complex number. Synonym for “arg”.

Syntax

y=angle(x)

See also

abs(), mag(), norm(), real(), imag(), conj(), phase(), arg()

380

arg()

Phase angle in radians of a complex number.

Syntax

y=arg(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn, Rm×n,Cm×n, Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function returns the phase angle in degrees of a real or complex number, vector or
matrix.

For x ∈ R: y =

{
0 for x ≥ 0
π for x < 0

For C 3 x := a+ i b ∧ a, b ∈ R:

Definition range Result

a > 0, b > 0 y = arctan
(
b
a

)
a < 0, b > 0 y = arctan

(
b
a

)
+ π

a < 0, b < 0 y = arctan
(
b
a

)
− π

a > 0, b < 0 y = arctan
(
b
a

)
a = 0, b > 0 y = π

2

a > 0, b > 0 y = −π
2

a = 0, b = 0 y = 0

In this case the arctan() function returns values in radians. The result y of the phase
function is in the range [−π, +π]. For x being a vector or a matrix the two equations
above are applied to the components of x.

Examples

y=arg(-3) returns 3.14,

y=arg(-3+4*i) returns 2.21.

381

See also

abs(), mag(), norm(), real(), imag(), conj(), phase()

382

conj()

Conjugate of a complex number.

Syntax

y=conj(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn, Rm×n,Cm×n, Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function returns the conjugate of a real or complex number, vector or matrix.

For x ∈ R: y = x

For C 3 x := a+ i b ∧ a, b ∈ R: y = a− i b

For x being a vector or a matrix the two equations above are applied to the components
of x.

Example

y=conj(-3+4*i) returns -3-4*i.

See also

abs(), mag(), norm(), real(), imag(), phase(), arg()

383

deg2rad()

Converts phase from degrees into radians.

Syntax

y=deg2rad(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function converts a real phase, a complex phase or a phase vector given in degrees
into radians.

For x ∈ R: y =
π

180
x

For x∈ C : y =
π

180
Re {x}

For x being a vector the two equations above are applied to the components of x.

Example

y=deg2rad(45) returns 0.785.

See also

rad2deg(), phase(), arg()

384

imag()

Imaginary value of a complex number.

Syntax

y=imag(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn, Rm×n,Cm×n, Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function returns the imaginary value of a real or complex number, vector or matrix.

For x ∈ R: y = 0

For C 3 x := a+ i b ∧ a, b ∈ R: y = b

For x being a vector or a matrix the two equations above are applied to the components
of x.

Example

y=imag(-3+4*i) returns 4.

See also

abs(), mag(), norm(), real(), conj(), phase(), arg()

385

mag()

Magnitude of a complex number.

Syntax

y=mag(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn, Rm×n,Cm×n, Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function calculates the magnitude (absolute value) of a real or complex number, vector
or matrix.

For x ∈ R: y =

{
x for x ≥ 0
−x for x < 0

For C 3 x := a+ i b ∧ a, b ∈ R: y =
√
a2 + b2

For x being a vector or a matrix the two equations above are applied to the components
of x.

Examples

y=mag(-3) returns 3,

y=mag(-3+4*i) returns 5.

See also

abs(), norm(), real(), imag(), conj(), phase(), arg()

386

norm()

Square of the absolute value of a vector.

Syntax

y=norm(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function returns the square of the absolute value of a real or complex number, vector
or matrix.

For x ∈ R: y = x2

For C 3 x := a+ i b ∧ a, b ∈ R: y = a2 + b2

For x being a vector or a matrix the two equations above are applied to the components
of x.

Example

y=norm(-3+4*i) returns 25.

See also

abs(), mag(), real(), imag(), conj(), phase(), arg()

387

phase()

Phase angle in degrees of a complex number.

Syntax

y=phase(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn, Rm×n,Cm×n, Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function returns the phase angle in degrees of a real or complex number, vector or
matrix.

For x ∈ R: y =

{
0 for x ≥ 0
180 for x < 0

For C 3 x := a+ i b ∧ a, b ∈ R:

Definition range Result

a > 0, b > 0 y = arctan
(
b
a

)
a < 0, b > 0 y = arctan

(
b
a

)
+ 180

a < 0, b < 0 y = arctan
(
b
a

)
− 180

a > 0, b < 0 y = arctan
(
b
a

)
a = 0, b > 0 y = 90
a > 0, b > 0 y = −90
a = 0, b = 0 y = 0

In this case the arctan() function returns values in degrees. The result y of the phase
function is in the range [−180, +180]. For x being a vector or a matrix the two equations
above are applied to the components of x.

Examples

y=phase(-3) returns 180,

y=phase(-3+4*i) returns 127.

388

See also

abs(), mag(), norm(), real(), imag(), conj(), arg()

389

polar()

Transform from polar coordinates into complex number.

Syntax

c=polar(a,p)

Arguments

Name Type Def. Range Required

a Rn, Cn]−∞,+∞[
√

p Rn, Cn]−∞,+∞[
√

Description

This function transforms a point given in polar coordinates (amplitude a and phase p in
degrees) in the complex plane into the corresponding complex number:

x+ i y = a eip = a cos p+ i a sin p

For a or p being vectors the equation above is applied to the components of a or p.

Example

c=polar(3,45) returns 2.12+j2.12.

See also

abs(), mag(), norm(), real(), imag(), conj(), phase(), arg(), exp(), cos(), sin()

390

rad2deg()

Converts phase from degrees into radians.

Syntax

y=rad2deg(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function converts a real phase, a complex phase or a phase vector given in radians
into degrees.

For x ∈ R: y =
180

π
x

For x∈ C : y =
180

π
Re {x}

For x being a vector the two equations above are applied to the components of x.

Example

y=deg2rad(0.785) returns 45.

See also

deg2rad(), phase(), arg()

391

real()

Real value of a complex number.

Syntax

y=real(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn, Rm×n,Cm×n,Rm×n×p, Cm×n×p]−∞,+∞[
√

Description

This function returns the real value of a real or complex number, vector or matrix.

For x ∈ R: y = x

For C 3 x := a+ i b ∧ a, b ∈ R: y = a

For x being a vector or a matrix the two equations above are applied to the components
of x.

Example

y=real(-3+4*i) returns -3.

See also

abs(), mag(), norm(), imag(), conj(), phase(), arg()

392

signum()

Signum function.

Syntax

y=signum(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the sign of a real or complex number or vector.

For x ∈ R: y =


1 for x > 0
0 for x = 0
−1 for x < 0

For x ∈ C: y =

{ x

|x|
for x 6= 0

0 for x = 0

For x being a vector the two equations above are applied to the components of x.

Examples

y=signum(-4) returns -1,

y=signum(3+4*i) returns 0.6+j0.8.

See also

abs(), sign()

393

sign()

Sign function.

Syntax

y=sign(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the sign of a real or complex number or vector.

For x ∈ R: y =

{
1 for x >= 0
−1 for x < 0

For x ∈ C: y =

{ x

|x|
for x 6= 0

1 for x = 0

For x being a vector the two equations above are applied to the components of x.

Examples

y=sign(-4) returns -1,

y=sign(3+4*i) returns 0.6+j0.8.

See also

abs(), signum()

394

sqr()

Square of a number.

Syntax

y=sqr(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the square root of a real or complex number or vector.

y = x2

For x being a vector the two equations above are applied to the components of x.

Examples

y=sqr(-4) returns 16,

y=sqr(3+4*i) returns -7+j24.

See also

sqrt()

395

sqrt()

Square root.

Syntax

y=sqrt(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the square root of a real or complex number or vector.

For x ∈ R: y =

{ √
x for x ≥ 0

i
√
−x for x < 0

For x ∈ C: y =
√
|x| eiϕ

2 with ϕ = arg (x)

For x being a vector the two equations above are applied to the components of x.

Examples

y=sqrt(-4) returns 0+j2,

y=sqrt(3+4*i) returns 2+j1.

See also

sqr()

396

unwrap()

Unwraps a phase vector in radians.

Syntax

y=unwrap(x)

y=unwrap(x, t)

Arguments

Name Type Def. Range Required Default

x Rn, Cn]−∞,+∞[
√

t R]−∞,+∞[π

Description

This function unwraps a phase vector x to avoid phase jumps. If two consecutive values
of x differ by more than tolerance t, ∓2π(depending on the sign of the difference) is added
to the current element of x. The predefined value of the optional parameter t is π.

Examples

y=unwrap(3.15*linspace(-2,2,5)) returns -6.3, -9.43, -12.6, -15.7, -18.8,

y=unwrap(2*linspace(-2,2,5),1) returns -4, -8.28, -12.6, -16.8, -21.1,

y=unwrap(2*linspace(-2,2,5),3) returns -4, -2, 0, 2, 4.

See also

abs(), mag(), norm(), real(), imag(), conj(), phase(), arg()

397

Exponential and Logarithmic Functions

exp()

Exponential function.

Syntax

y=exp(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the exponential function of a real or complex number or vector.

For x ∈ R: y = ex

For C 3 x := a+ i b ∧ a, b ∈ R: y = ex = ea+i b = ea (cos b+ i sin b)

For x being a vector the two equations above are applied to the components of x.

Examples

y=exp(-4) returns 0.0183,

y=exp(3+4*i) returns -13.1-j15.2.

See also

ln(), log10(), log2(), cos(), sin()

398

log10()

Decimal logarithm.

Syntax

y=log10(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[\ {0}
√

Description

This function calculates the principal value of the decimal logarithm (base 10) of a real or
complex number or vector.

For x ∈ R: y =


ln (x)

ln (10)
for x > 0

ln (−x)

ln (10)
+ i

π

ln (10)
for x < 0

For x ∈ C: y =
ln (|x|)
ln (10)

+ i
arg (x)

ln (10)

For x being a vector the two equations above are applied to the components of x.

Examples

y=log10(-4) returns 0.602+j1.36,

y=log10(3+4*i) returns 0.699+j0.403.

See also

ln(), log2(), exp(), arg()

399

log2()

Binary logarithm.

Syntax

y=log2(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[\ {0}
√

Description

This function calculates the principal value of the binary logarithm (base 2) of a real or
complex number or vector.

For x ∈ R: y =


ln (x)

ln (2)
for x > 0

ln (−x)

ln (2)
+ i

π

ln (2)
for x < 0

For x ∈ C: y =
ln (|x|)
ln (2)

+ i
arg (x)

ln (2)

For x being a vector the two equations above are applied to the components of x.

Examples

y=log2(-4) returns 2+j4.53,

y=log2(3+4*i) returns 2.32+j1.34.

See also

ln(), log10(), exp(), arg()

400

ln()

Natural logarithm (base e).

Syntax

y=ln(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[\ {0}
√

Description

This function calculates the principal value of the natural logarithm (base e) of a real or
complex number or vector.

For x ∈ R: y =

{
ln (x) for x > 0

ln (−x) for x < 0

For x ∈ C: y = ln (|x|) + i arg (x)

For x being a vector the two equations above are applied to the components of x.

Examples

y=ln(-4) returns 1.39+j3.14,

y=ln(3+4*i) returns 1.61+j0.927.

See also

log2(), log10(), exp(), arg()

401

Trigonometry

cos()

Cosine function.

Syntax

y=cos(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the cosine of a real or complex number or vector.

For x ∈ R: y = cos (x) with y ∈ [−1, 1]

For x ∈ C: y = 1
2

(exp (i x) + exp (−i x))

For x being a vector the two equations above are applied to the components of x.

Examples

y=cos(-0.5) returns 0.878,

y=cos(3+4*i) returns -27.0-j3.85.

See also

sin(), tan(), arccos()

402

cosec()

Cosecant.

Syntax

y=cosec(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[\ {kπ} , k ∈ Z
√

Description

This function calculates the cosecant of a real or complex number or vector.

y = cosecx=
1

sin x

For x being a vector the equation above is applied to the components of x.

Example

y=cosec(1) returns 1.19.

See also

sin(), sec()

403

cot()

Cotangent function.

Syntax

y=cot(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[\ {kπ} , k ∈ Z
√

Description

This function calculates the cotangent of a real or complex number or vector.

For x ∈ R: y =
1

tan (x)
with y ∈ [−∞, +∞]

For x ∈ C: y = i

(
exp (i x)2 + 1

exp (i x)2 − 1

)

For x being a vector the two equations above are applied to the components of x.

Examples

y=cot(-0.5) returns -1.83,

y=cot(3+4*i) returns -0.000188-j1.

See also

tan(), sin(), cos(), arctan(), arccot()

404

sec()

Secant.

Syntax

y=sec(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[\
{(
k + 1

2

)
π
}
, k ∈ Z

√

Description

This function calculates the secant of a real or complex number or vector.

y =sec x=
1

cos x

For x being a vector the equation above is applied to the components of x.

Example

y=sec(0) returns 1.

See also

cos(), cosec()

405

sin()

Sine function.

Syntax

y=sin(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the sine of a real or complex number or vector.

For x ∈ R: y = sin (x) with y ∈ [−1, 1]

For x ∈ C: y = 1
2
i (exp (−i x)− exp (i x))

For x being a vector the two equations above are applied to the components of x.

Examples

y=sin(-0.5) returns -0.479,

y=sin(3+4*i) returns 3.85-j27.

See also

cos(), tan(), arcsin()

406

tan()

Tangent function.

Syntax

y=tan(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[\
{(
k + 1

2

)
π
}
, k ∈ Z

√

Description

This function calculates the tangent of a real or complex number or vector.

For x ∈ R: y = tan (x) with y ∈ [−∞, +∞]

For x ∈ C: y = −i

(
exp (i x)2 − 1

exp (i x)2 + 1

)

For x being a vector the two equations above are applied to the components of x.

Examples

y=tan(-0.5) returns -0.546,

y=tan(3+4*i) returns -0.000187+j0.999.

See also

cot(), sin(), cos(), arctan(), arccot()

407

Inverse Trigonometric Functions

arccos()

Arc cosine (also known as “inverse cosine”).

Syntax

y=arccos(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn [−1,+1]
√

Description

This function calculates principal value of the the arc cosine of a real or complex number
or vector.

For x ∈ R: y = arccos (x) with y ∈ [0, π]

For x ∈ C: y = −i ln
(
x+
√
x2 − 1

)
For x being a vector the two equations above are applied to the components of x.

Examples

y=arccos(-1) returns 3.14,

y=arccos(3+4*i) returns 0.937-j2.31.

See also

cos(), arcsin(), arctan(), arccot()

408

arccot()

Arc cotangent.

Syntax

y=arccot(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the principal value of the arc cotangent of a real or complex number
or vector.

For x ∈ R: y =arccot(x) with y ∈ [0, π]

For x ∈ C: y =
i

2
ln

(
x− i
x+ i

)
For x being a vector the two equations above are applied to the components of x.

Examples

y=arccot(-1) returns 2.36,

y=arccot(3+4*i) returns 0.122-j0.159.

See also

cot(), tan(), arccos(), arcsin(), arctan()

409

arcsin()

Arc sine (also known as “inverse sine”).

Syntax

y=arcsin(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn [−1,+1]
√

Description

This function calculates the principal value of the arc sine of a real or complex number or
vector.

For x ∈ R: y = arcsin (x) with y ∈
[
−π

2
, π

2

]
For x ∈ C: y = −i ln

[
i x+

√
1− x2

]
For x being a vector the two equations above are applied to the components of x.

Examples

y=arcsin(-1) returns -1.57,

y=arcsin(3+4*i) returns 0.634+j2.31.

See also

sin(), arccos(), arctan(), arccot()

410

arctan()

Arc tangent (also known as “inverse tangent”).

Syntax

z=arctan(x)

z=arctan(y,x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

y R, C, Rn, Cn]−∞,+∞[

Description

For the first syntax (z=arctan(x)), this function calculates the principal value of the arc
tangent of a real or complex number or vector.

For x ∈ R: y = arctan (x) with y ∈
[
−π

2
, π

2

]
For x ∈ C: y = −1

2
i ln

[
2 i

x+ i
− 1

]
For x being a vector the two equations above are applied to the components of x.

If the second syntax (z=arctan(y, x)) finds application, the expression

z = ± arctan (y/x)

(with the arctan() function defined above) is evaluated. The sign of z is determined by

sign(z)=

{
+ for Re {x} > 0
− for Re {x} > 0

.

Note that for the second syntax the case x = y = 0 is not defined.

Examples

z=arctan(-1) returns -0.785,

411

z=arctan(3+4*i) returns 1.45+j0.159,

z=arctan(1,1) returns 0.785.

See also

tan(), arccos(), arcsin(), arccot()

412

Hyperbolic Functions

cosh()

Hyperbolic cosine.

Syntax

y=cosh(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the hyperbolic cosine of a real or complex number or vector.

y = 1
2

(ex + e−x)

For x being a vector the equation above is applied to the components of x.

Examples

y=cosh(-1) returns 1.54,

y=cosh(3+4*i) returns -6.58-j7.58.

See also

exp(), sinh(), tanh(), cos()

413

cosech()

Hyperbolic cosecant.

Syntax

y=cosech(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[\ {0}
√

Description

This function calculates the hyperbolic cosecant of a real or complex number or vector.

y =
1

sinh x

For x being a vector the equation above is applied to the components of x.

Examples

y=cosech(-1) returns -0.851,

y=cosech(3+4*i) returns -0.0649+j0.0755.

See also

exp(), sinh(), sech(), cosec()

414

coth()

Hyperbolic cotangent.

Syntax

y=coth(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[\ {0}
√

Description

This function calculates the hyperbolic cotangent of a real or complex number or vector.

y =
1

tanh x
=
ex + e−x

ex − e−x

For x being a vector the equation above is applied to the components of x.

Examples

y=coth(-1) returns -1.31,

y=coth(3+4*i) returns 0.999-j0.0049.

See also

exp(), cosh(), sinh(), tanh(), tan()

415

sech()

Hyperbolic secant.

Syntax

y=sech(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the hyperbolic secant of a real or complex number or vector.

y =
1

cosh x

For x being a vector the equation above is applied to the components of x.

Examples

y=sech(-1) returns 0.648,

y=sech(3+4*i) returns -0.0653+j0.0752.

See also

exp(), cosh(), cosech(), sec()

416

sinh()

Hyperbolic sine.

Syntax

y=sinh(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the hyperbolic sine of a real or complex number or vector.

y = 1
2

(ex − e−x)

For x being a vector the equation above is applied to the components of x.

Examples

y=sinh(-1) returns -1.18,

y=sinh(3+4*i) returns -6.55-j7.62.

See also

exp(), cosh(), tanh(), sin()

417

tanh()

Hyperbolic tangent.

Syntax

y=tanh(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the hyperbolic tangent of a real or complex number or vector.

y =
ex − e−x

ex + e−x

For x being a vector the equation above is applied to the components of x.

Examples

y=tanh(-1) returns -0.762,

y=tanh(3+4*i) returns 1+j0.00491.

See also

exp(), cosh(), sinh(), coth(), tan()

418

Inverse Hyperbolic Functions

arcosh()

Hyperbolic area cosine.

Syntax

y=arcosh(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn [1,+∞[
√

Description

This function calculates the hyperbolic area cosine of a real or complex number or vector,
which is the inverse function to the “cosh” function.

y = arcoshx = ln
(
x+
√
x2 − 1

)
For x being a vector the equation above is applied to the components of x.

Examples

y=arcosh(1) returns 0,

y=arcosh(3+4*i) returns 2.31+j0.937.

See also

arsinh(), artanh(), cosh(), arccos(), ln(), sqrt()

419

arcoth()

Hyperbolic area cotangent.

Syntax

y=arcoth(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,−1[∪]+1,+∞[
√

Description

This function calculates the hyperbolic area cotangent of a real or complex number or
vector, which is the inverse function to the “cotanh” function.

y = arcothx =
1

2
ln

(
x+ 1

x− 1

)
For x being a vector the equation above is applied to the components of x.

Examples

y=arcoth(2) returns 0.549,

y=arcoth(3+4*i) returns 0.118-j0.161.

See also

arsinh(), arcosh(), tanh(), arctan(), ln(), sqrt()

420

arsinh()

Hyperbolic area sine.

Syntax

y=arsinh(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the hyperbolic area sine of a real or complex number or vector,
which is the inverse function to the “sinh” function.

y = arsinhx = ln
(
x+
√
x2 + 1

)
For x being a vector the equation above is applied to the components of x.

Examples

y=arsinh(1) returns 0.881,

y=arsinh(3+4*i) returns 2.3+j0.918.

See also

arcosh(), artanh(), sinh(), arcsin(), ln(), sqrt()

421

artanh()

Hyperbolic area tangent.

Syntax

y=artanh(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−1,+1[
√

Description

This function calculates the hyperbolic area tangent of a real or complex number or vector,
which is the inverse function to the “tanh” function.

y = artanhx =
1

2
ln

(
1 + x

1− x

)
For x being a vector the equation above is applied to the components of x.

Examples

y=artanh(0) returns 0,

y=artanh(3+4*i) returns 0.118+j1.41.

See also

arsinh(), arcosh(), tanh(), arctan(), ln(), sqrt()

422

Rounding

ceil()

Round to the next higher integer.

Syntax

y=ceil(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function rounds a real number x to the next higher integer value.

If x is a complex number both real part and imaginary part are rounded. For x being a
vector the operation above is applied to the components of x.

Examples

y=ceil(-3.5) returns -3,

y=ceil(3.2+4.7*i) returns 4+j5.

See also

floor(), fix(), round()

423

fix()

Truncate decimal places from real number.

Syntax

y=fix(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function truncates the decimal places from a real number x and returns an integer.

If x is a complex number both real part and imaginary part are rounded. For x being a
vector the operation above is applied to the components of x.

Examples

y=fix(-3.5) returns -3,

y=fix(3.2+4.7*i) returns 3+j4.

See also

ceil(), floor(), round()

424

floor()

Round to the next lower integer.

Syntax

y=floor(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function rounds a real number x to the next lower integer value.

If x is a complex number both real part and imaginary part are rounded. For x being a
vector the operation above is applied to the components of x.

Examples

y=floor(-3.5) returns -4,

y=floor(3.2+4.7*i) returns 3+j4.

See also

ceil(), fix(), round()

425

round()

Round to nearest integer.

Syntax

y=round(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function rounds a real number x to its nearest integer value.

If x is a complex number both real part and imaginary part are rounded. For x being a
vector the operation above is applied to the components of x.

Examples

y=round(-3.5) returns -4,

y=round(3.2+4.7*i) returns 3+j5.

See also

ceil(), floor(), fix()

426

Special Mathematical Functions

besseli0()

Modified Bessel function of order zero.

Syntax

i0=besseli0(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function evaluates the modified Bessel function of order zero of a real or complex
number or vector.

i0 (x) = J0 (i x) =
∞∑
k=0

(
x
2

)2k
k! Γ (k + 1)

,

where J0 (x)is the Bessel function of order zero and Γ (x)denotes the gamma function.

For x being a vector the equation above is applied to the components of x.

Example

y=besseli0(1) returns 1.266.

See also

besselj(), bessely()

427

besselj()

Bessel function of n-th order.

Syntax

jn=besselj(n,x)

Arguments

Name Type Def. Range Required

n N [0,+∞[
√

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function evaluates the Bessel function of n-th order of a real or complex number or
vector.

Jn (x) =
∞∑
k=0

(−1)k
(
x
2

)n+2k

k! Γ (n+ k + 1)
,

where Γ (x)denotes the gamma function.

For x being a vector the equation above is applied to the components of x.

Example

y=besselj(1,1) returns 0,44.

See also

besseli0(), bessely()

428

bessely()

Bessel function of second kind and n-th order.

Syntax

yn=bessely(n,x)

Arguments

Name Type Def. Range Required

n N [0,+∞[
√

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function evaluates the Bessel function of second kind and n-th order of a real or
complex number or vector.

Yn (x) = lim
m→n

Jm (x) cosmπ − J−m (x)

sinmπ
,

where Jm (x)denotes the Bessel function of first kind and n-th order.

For x being a vector the equation above is applied to the components of x.

Example

y=bessely(1,1) returns -0.781.

See also

besseli0(), besselj()

429

erf()

Error function.

Syntax

y=erf(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function evaluates the error function of a real or complex number or vector. For
x ∈ R,

y =
2√
π

x∫
0

e−t
2

dt

If x is a complex number both real part and imaginary part are subjected to the equation
above. For x being a vector the equation is applied to the components of x.

Example

y=erf(0.5) returns 0.520.

See also

erfc(), erfinv(), erfcinv(), exp()

430

erfc()

Complementary error function.

Syntax

y=erfc(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function evaluates the complementary error function of a real or complex number or
vector. For x ∈ R,

y = 1− 2√
π

x∫
0

e−t
2

dt

If x is a complex number both real part and imaginary part are subjected to the equation
above. For x being a vector the equation is applied to the components of x.

Example

y=erfc(0.5) returns 0.480.

See also

erf(), erfinv(), erfcinv(), exp()

431

erfinv()

Inverse error function.

Syntax

y=erfinv(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−1,+1[
√

Description

This function evaluates the inverse of the error function of a real or complex number or
vector. For −1 < x < 1,

y = erf−1(x)

If x is a complex number both real part and imaginary part are subjected to the equation
above. For x being a vector the equation is applied to the components of x.

Example

y=erfinv(0.8) returns 0.906.

See also

erf(), erfc(), erfcinv(), exp()

432

erfcinv()

Inverse complementary error function.

Syntax

y=erfcinv(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]0,+2[
√

Description

This function evaluates the inverse of the complementary error function of a real or complex
number or vector. For 0 < x < 2,

y = erfc−1(x)

If x is a complex number both real part and imaginary part are subjected to the equation
above. For x being a vector the equation is applied to the components of x.

Example

y=erfcinv(0.5) returns 0.477.

See also

erf(), erfc(), erfinv(), exp()

433

sinc()

Sinc function.

Syntax

y=sinc(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function evaluates the sinc function of a real or complex number or vector.

y =

{
sinx

x
for x 6= 0

1 for x = 0

For x being a vector the equation above is applied to the components of x.

Examples

y=sinc(-3) returns 0.047,

y=sinc(3+4*i) returns -3.86-j3.86.

See also

sin()

434

step()

Step function.

Syntax

y=step(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function calculates the step function of a real or complex number or vector. For x ∈ R,

y =


0 for x < 0

0.5 for x = 0
1 for x > 0

If x is a complex number both real part and imaginary part are subjected to the equation
above. For x being a vector the equation is applied to the components of x.

Example

y=step(0.5) returns 1.

See also

435

15.4.3 Data Analysis

Basic Statistics

avg()

Average of vector elements.

Syntax

y=avg(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn, Range xs : xe]−∞,+∞[
√

Description

This function returns the sum of the elements of a real or complex vector or range.

For x ∈Cn: y =
1

n

n∑
i=1

xi, 1 ≤ i ≤ n (for vectors) or xs ≤ i ≤ xe (for ranges)

For x being a real or complex number, x itself is returned.

Example

y=avg(linspace(1,3,10)) returns 2.

See also

sum(), max(), min()

436

cumavg()

Cumulative average of vector elements.

Syntax

y=cumavg(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function returns the cumulative average of the elements of a real or complex vector.

For x ∈Cn: yk =
1

k

k∑
i=1

xi, 1 ≤ k ≤ n

For x being a real or complex number, x itself is returned.

Example

y=cumavg(linspace(1,3,3)) returns 1, 1.5, 2.

See also

cumsum(), cumprod(), avg(), sum(), prod(), max(), min()

437

max()

Maximum value.

Syntax

y=max(x)

y=max(a,b)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn, Range xs : xe]−∞,+∞[
√

a R, C]−∞,+∞[
√

b R, C]−∞,+∞[
√

Description

For the first syntax (y=max(x)), this function returns the maximum value of a real or
complex vector or range.

For x ∈Rn: y =max (xi) , 1 ≤ i ≤ n (for vectors) or xs ≤ i ≤ xe (for ranges)

For x ∈ Cn: y = max (± |xi|) , 1 ≤ i ≤ n (for vectors) or xs ≤ i ≤ xe (for ranges),

with sign

{
+ for |arg (xi)| ≤ π

2

− else

For x being a real or complex number: that is the case n = 1.

The second syntax (y=max(a,b)) finds application, if two (generally complex) numbers a
and b need to be compared. In principle, the maximum of the absolute values is selected,
but it must be considered whether a and b are located in the right or left complex half
plane. If the latter is the case, the negative absolute value of a and b needs to be regarded
(for example, which is the case for negative real numbers), otherwise the positive absolute
value is taken:

y = max (± |a| ,± |b|),

with |a| sign

{
+ for |arg (a)| ≤ π

2

− else
and |b| sign

{
+ for |arg (b)| ≤ π

2

− else

438

Example

y=max(linspace(1,3,10)) returns 3.

y=max(1,3) returns 3.

y=max(1,1+i) returns 1+j1.

y=max(1,-1+i) returns 1.

See also

min(), abs()

439

min()

Minimum value.

Syntax

y=min(x)

y=min(a,b)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn, Range xs : xe]−∞,+∞[
√

a R, C]−∞,+∞[
√

b R, C]−∞,+∞[
√

Description

For the first syntax (y=min(x)), this function returns the minimum value of a real or
complex vector or range.

For x ∈Rn: y =min (xi) , 1 ≤ i ≤ n (for vectors) or xs ≤ i ≤ xe (for ranges)

For x ∈ Cn: y = min (± |xi|) , 1 ≤ i ≤ n (for vectors) or xs ≤ i ≤ xe (for ranges),

with sign

{
+ for |arg (xi)| ≤ π

2

− else

For x being a real or complex number: that is the case n = 1.

The second syntax (y=min(a,b)) finds application, if two (generally complex) numbers a
and b need to be compared. In principle, the maximum of the absolute values is selected,
but it must be considered whether a and b are located in the right or left complex half
plane. If the latter is the case, the negative absolute value of a and b needs to be regarded
(for example, which is the case for negative real numbers), otherwise the positive absolute
value is taken:

y = min (± |a| ,± |b|),

with |a| sign

{
+ for |arg (a)| ≤ π

2

− else
and |b| sign

{
+ for |arg (b)| ≤ π

2

− else

440

Example

y=min(linspace(1,3,10)) returns 1.

y=min(1,3) returns 1.

y=min(1,1+i) returns 1.

y=min(1,-1+i) returns -1+j1.

See also

max(), abs()

441

rms()

Root Mean Square of vector elements.

Syntax

y=rms(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function returns the rms (root mean square) value of the elements of a real or complex
vector. By application of the trapezoidal integration rule,

for x ∈Cn: y =

√
1

n

n∑
i=1

ai xi x∗i , 1 ≤ i ≤ n, ai =

{
1 for 2 ≤ i ≤ n− 1
1
2

for i = 1 or i = n

For x being a real or complex number, |x| itself is returned.

Example

y=rms(linspace(1,2,8)) returns 1.43.

See also

variance(), stddev(), avg()

442

runavg()

Running average of vector elements.

Syntax

y=runavg(x,m)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

m N [1,+∞[
√

Description

This function returns the running average over m elements of a real or complex vector.

For x ∈Cn: yk =
1

m

k+m−1∑
i=k

xi, 1 ≤ k ≤ n

For x being a real or complex number, x itself is returned.

Example

y=runavg(linspace(1,3,6),2) returns 1.2, 1.6, 2, 2.4, 2.8.

See also

cumavg(), cumsum(), avg(), sum()

443

stddev()

Standard deviation of vector elements.

Syntax

y=stddev(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function returns the stddev of the elements of a real or complex vector x.

For x ∈Cn: y =
√

variance(x)

For x being a real or complex number, 0 is returned.

Example

y=stddev(linspace(1,3,10)) returns 0.673.

See also

stddev(), avg(), max(), min()

444

variance()

Variance of vector elements.

Syntax

y=variance(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function returns the variance of the elements of a real or complex vector.

For x ∈Cn: y =
1

n− 1

n∑
i=1

(xi − x)2, where x denotes mean (average) value of x.

For x being a real or complex number, 0 is returned.

Example

y=variance(linspace(1,3,10)) returns 0.453.

See also

stddev(), avg(), max(), min()

445

Basic Operation

cumprod()

Cumulative product of vector elements.

Syntax

y=cumprod(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function returns the cumulative product of the elements of a real or complex vector.

For x ∈Cn: yk =
k∏
i=1

xi, 1 ≤ k ≤ n

For x being a real or complex number, x itself is returned.

Example

y=cumprod(linspace(1,3,3)) returns 1, 2, 6.

See also

cumsum(), cumavg(), prod(), sum(), avg(), max(), min()

446

cumsum()

Cumulative sum of vector elements.

Syntax

y=cumsum(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function returns the cumulative sum of the elements of a real or complex vector.

For x ∈Cn: yk =
k∑
i=1

xi, 1 ≤ k ≤ n

For x being a real or complex number, x itself is returned.

Example

y=cumsum(linspace(1,3,3)) returns 1, 3, 6.

See also

cumprod(), cumavg(), sum(), prod(), avg(), max(), min()

447

interpolate()

Equidistant spline interpolation of data vector.

Syntax

z=interpolate(y,t,m)

z=interpolate(y,t)

Arguments

Name Type Def. Range Required Default

y Rn, Cn]−∞,+∞[
√

t Rn, Cn]−∞,+∞[
√

m N [3,+∞[64

Description

This function uses spline interpolation to interpolate between the points of a vector y(t).
If the number of samples n is not specified, a default value of n = 64 is assumed.

Example

z=interpolate(linspace(0,2,3)*linspace(0,2,3),linspace(0,2,3))

returns a smooth parabolic curve:

Use the Cartesian diagram to display it.

See also

sum(), prod()

448

00.511.520
2
4

Interpolate.0001
Figure 15.4: Interpolated curve

prod()

Product of vector elements.

Syntax

y=prod(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function returns the product of the elements of a real or complex vector.

For x ∈Cn: y =
n∏
i=1

xi

For x being a real or complex number, x itself is returned.

Example

y=prod(linspace(1,3,10)) returns 583.

449

See also

sum(), avg(), max(), min()

450

sum()

Sum of vector elements.

Syntax

y=sum(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function returns the sum of the elements of a real or complex vector.

For x ∈Cn: y =
n∑
i=1

xi

For x being a real or complex number, x itself is returned.

Example

y=sum(linspace(1,3,10)) returns 20.

See also

prod(), avg(), max(), min()

451

xvalue()

Returns x-value which is associated with the y-value nearest to a specified y-value in
a given vector.

Syntax

x=xvalue(f,yval)

Arguments

Name Type Def. Range Required

f Rn, Cn]−∞,+∞[
√

yval R, C]−∞,+∞[
√

Description

This function returns the x -value which is associated with the y-value nearest to yval in
the given vector f ; therefore the vector f must have a single data dependency.

Example

x=xvalue(f,1).

See also

yvalue(), interpolate()

452

yvalue()

Returns y-value of a given vector which is located nearest to the specified x-value.

Syntax

y=yvalue(f,xval)

Arguments

Name Type Def. Range Required

f Rn, Cn]−∞,+∞[
√

xval R, C]−∞,+∞[
√

Description

This function returns the y-value of the given vector f which is located nearest to the
x-value xval ; therefore the vector f must have a single data dependency.

Example

y=yvalue(f,1).

See also

xvalue(), interpolate()

453

Differentiation and Integration

diff()

Differentiate vector with respect to another vector.

Syntax

z=diff(y,x,n)

Arguments

Name Type Def. Range Required Default

y Rk, Ck]−∞,+∞[
√

x Rm, Cm]−∞,+∞[
√

n N 1

Description

This function numerically differentiates a vector y with respect to a vector x. If the optional
integer parameter n is given, the n-th derivative is calculated. Differentiation is executed
for N=min(k,m) elements. For n=1,

∆yi
∆xi

=



1

2

(
yi − yi−1

xi − xi−1

+
yi+1 − yi
xi+1 − xi

)
forN − 1 > i > 0

yi+1 − yi
xi+1 − xi

for i = 0

yi − yi−1

xi − xi−1

for i = N − 1

If n>1, the result of the differentiation above is assigned to y and the aforementioned
differentiation step is repeated until the number of those steps is equal to n.

Example

z=diff(linspace(1,3,3),linspace(2,3,3)) returns 2, 2, 2.

See also

integrate(), sum(), max(), min()

454

integrate()

Integrate vector.

Syntax

z=integrate(y,h)

Arguments

Name Type Def. Range Required

y R, C, Rn, Cn]−∞,+∞[
√

h R, C]−∞,+∞[
√

Description

This function numerically integrates a vector x with respect to a differential h. The inte-
gration method is according to the trapez rule:

∫
f (t) dt ≈ h

(y0

2
+ y1 + y2 + . . .+ yn−1 +

yn
2

)
Example

Calculate an approximation of the integral
3∫
1

t dt using 105 points:

z=integrate(linspace(1,3,105)*linspace(1,3,105),0.02) returns 4.

See also

diff(), sum(), max(), min()

455

Signal Processing

dft()

Discrete Fourier Transform.

Syntax

y=dft(v)

Arguments

Name Type Def. Range Required

v Rn, Cn]−∞,+∞[
√

Description

This function computes the Discrete Fourier Transform (DFT) of a vector v. The advantage
of this function compared to fft() is that the number n of components of v is arbitrary,
while for the latter n must be a power of 2. The drawbacks are that dft() is slower and
less accurate than fft().

Example

This calculates the spectrum y of a DC signal:

y=dft(linspace(1,1,7)) returns

y

1
-1.59e-17+j1.59e-17

...
2.22e-16-j1.11e-16

Please note that in this example 7 points are used for the time vector v. Since 7 is not a
power of 2, the same expression used together with the fft() function would lead to wrong
results. Note also the rounding errors where “0” would be the correct value.

See also

idft(), fft(), ifft(), Freq2Time(), Time2Freq()

456

fft()

Fast Fourier Transform.

Syntax

y=fft(v)

Arguments

Name Type Def. Range Required

v Rn, Cn]−∞,+∞[
√

Description

This function computes the Fast Fourier Transform (FFT) of a vector v. The number n of
components of v must be a power of 2.

Example

This calculates the spectrum y of a DC signal:

y=fft(linspace(1,1,8)) returns

y

1
0
...
0

See also

ifft(), dft(), idft(), Freq2Time(), Time2Freq()

457

idft()

Inverse Discrete Fourier Transform.

Syntax

y=idft(v)

Arguments

Name Type Def. Range Required

v Rn, Cn]−∞,+∞[
√

Description

This function computes the Inverse Discrete Fourier Transform (IDFT) of a vector v. The
advantage of this function compared to ifft() is that the number n of components of v is
arbitrary, while for the latter n must be a power of 2. The drawbacks are that idft() is
slower and less accurate than ifft().

Example

This calculates the time function y belonging to a white spectrum:

y=idft(linspace(1,1,7)) returns

y

7
-1.11e-16-j1.11e-16

...
1.55e-15+j7.77e-16

Please note that in this example 7 points are used for the spectrum vector v. Since 7 is
not a power of 2, the same expression used together with the ifft() function would lead to
wrong results. Note also the rounding errors where “0” would be the correct value.

See also

dft(), ifft(), fft(), Freq2Time(), Time2Freq()

458

ifft()

Inverse Fast Fourier Transform.

Syntax

y=ifft(v)

Arguments

Name Type Def. Range Required

v Rn, Cn]−∞,+∞[
√

Description

This function computes the Inverse Fast Fourier Transform (IFFT) of a vector v. The
number n of components of v must be a power of 2.

Example

This calculates the time function y belonging to a white spectrum:

y=ifft(linspace(1,1,8)) returns

y

8
0
...
0

See also

fft(), dft(), idft(), Freq2Time(), Time2Freq()

459

Time2Freq()

Interpreted Discrete Fourier Transform.

Syntax

y=Time2Freq(v,t)

Arguments

Name Type Def. Range Required

v Rn, Cn]−∞,+∞[
√

t Rk, Ck]−∞,+∞[
√

Description

This function computes the Discrete Fourier Transform (DFT) of a vector v with respect
to a time vector t.

Example

This calculates the spectrum y(f) of a DC signal:

y=Time2Freq(linspace(1,1,7),linspace(0,1,2)) returns

Frequency y

0 1
0.167 -1.59e-17+j1.59e-17

...
...

1 2.22e-16-j1.11e-16

Please note that in this example 7 points are used for the time vector v. Note also the
rounding errors at t>0, where “0” would be the correct value.

See also

idft(), fft(), ifft(), Freq2Time()

460

Freq2Time()

Interpreted Inverse Discrete Fourier Transform.

Syntax

y=Freq2Time(v,f)

Arguments

Name Type Def. Range Required

v Rn, Cn]−∞,+∞[
√

f Rk, Ck]−∞,+∞[
√

Description

This function computes the Inverse Discrete Fourier Transform (IDFT) of a vector v with
respect to a frequency vector f.

Example

This calculates the time function y(t) belonging to a white spectrum:

y=Freq2Time(linspace(1,1,7),linspace(0,1,2)) returns

Frequency y

0 7
0.167 -1.11e-16-j1.11e-16

...
...

1 1.55e-15+j7.77e-16

Please note that in this example 7 points are used for the spectrum vector v. Note also
the rounding errors at t>0, where “0” would be the correct value.

See also

dft(), ifft(), fft(), Time2Freq()

461

kbd()

Kaiser-Bessel derived window.

Syntax

y=kbd(a,n)

y=kbd(a)

Arguments

Name Type Def. Range Required Default

a R]−∞,+∞[
√

n N [1,+∞[64

Description

This function generates a Kaiser-Bessel window according to

yk =

√√√√√√√√
k∑
i=0

I0

(
π a
√

1−
(

4 i
n
− 1
))

n
2∑
i=0

I0

(
π a
√

1−
(

4 i
n
− 1
)) ,

yn−k−1 = yk

for 0 ≤ k < n
2

If the parameter n is not specified, n=64 is assumed.

Example

y=kbd(0.1,4) returns .

See also

dft(), ifft(), fft()

462

15.5 Electronics Functions

15.5.1 Unit Conversion

dB()

dB value.

Syntax

y=dB(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function returns the dB value of a real or complex number or vector.

y = 20 log |x|

For x being a vector the equation above is applied to the components of x.

Example

y=db(10) returns 20.

See also

log10()

463

dbm()

Convert voltage to power in dBm.

Syntax

y=dBm(u,Z0)

y=dBm(u)

Arguments

Name Type Def. Range Required Default

u R, C, Rn, Cn]−∞,+∞[
√

Z0 R, C, Rn, Cn]−∞,+∞[50

Description

This function returns the corresponding dBm power of a real or complex voltage or vector
u. The impedance Z0 referred to is either specified or 50Ω.

y = 10 log
|u|2

Z0 0.001W

For u being a vector the equation above is applied to the components of u.

Please note that u is considered as a rms value, not as an amplitude.

Example

y=dbm(1) returns 13.

See also

dbm2w(), w2dbm(), log10()

464

dbm2w()

Convert power in dBm to power in Watts.

Syntax

y=dBm2w(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function converts the real or complex power or power vector, given in dBm, to the
corresponding power in Watts.

y = 0.001 10
x
10

For x being a vector the equation above is applied to the components of x.

Example

y=dbm2w(10) returns 0.01.

See also

dbm(), w2dbm()

465

w2dbm()

Convert power in Watts to power in dBm.

Syntax

y=w2dBm(x)

Arguments

Name Type Def. Range Required

x R, C, Rn, Cn]−∞,+∞[
√

Description

This function converts the real or complex power or power vector, given in Watts, to the
corresponding power in dBm.

y = 10 log
x

0.001W

For x being a vector the equation above is applied to the components of x.

Example

y=w2dbm(1) returns 30.

See also

dbm(), dbm2w(), log10()

466

15.5.2 Reflection Coefficients and VSWR

rtoswr()

Converts reflection coefficient to voltage standing wave ratio (VSWR).

Syntax

s=rtoswr(r)

Arguments

Name Type Def. Range Required

r R, C, Rn, Cn |r| ≤ 1
√

Description

For a real or complex reflection coefficient r, this function calculates the corresponding
voltage standing wave ratio (VSWR) s according to

s =
1 + |r|
1− |r|

VSWR is a real number and if usually given in the notation “s : 1”.

For r being a vector the equation above is applied to the components of r.

Examples

s=rtoswr(0) returns 1.

s=rtoswr(0.1+0.2*i) returns 1.58.

See also

ytor(), ztor(), rtoy(), rtoz()

467

rtoy()

Converts reflection coefficient to admittance.

Syntax

y=rtoy(r)

y=rtoy(r, Z0)

Arguments

Name Type Def. Range Required Default

r R, C, Rn, Cn |r| ≤ 1
√

Z0 R, C]−∞,+∞[50

Description

For a real or complex reflection coefficient r, this function calculates the corresponding
admittance y according to

y =
1

Z0

1− r
1 + r

If the reference impedance Z0 is not provided, the function assumes Z0 = 50Ω.

For r being a vector the equation above is applied to the components of r.

Example

y=rtoy(0.333) returns 0.01.

See also

ytor(), ztor(), rtoswr()

468

rtoz()

Converts reflection coefficient to impedance.

Syntax

z=rtoz(r)

z=rtoz(r, Z0)

Arguments

Name Type Def. Range Required Default

r R, C, Rn, Cn |r| ≤ 1
√

Z0 R, C]−∞,+∞[50

Description

For a real or complex reflection coefficient r, this function calculates the corresponding
impedance Z according to

Z = Z0
1− r
1 + r

If the reference impedance Z0 is not provided, the function assumes Z0 = 50Ω.

For r being a vector the equation above is applied to the components of r.

Example

z=rtoz(0.333) returns 99.9.

See also

ztor(), ytor(), rtoswr()

469

ytor()

Converts admittance to reflection coefficient.

Syntax

r=ytor(Y)

r=ytor(Y, Z0)

Arguments

Name Type Def. Range Required Default

Y R, C, Rn, Cn]−∞,+∞[
√

Z0 R, C]−∞,+∞[50

Description

For a real or complex admittance y, this function calculates the corresponding reflection
coefficient according to

r =
1− Y Z0

1 + Y Z0

For Y being a vector the equation above is applied to the components of Y.

If the reference impedance Z0 is not provided, the function assumes Z0 = 50Ω.

Often a dB measure is given for the reflection coefficient, the so called “return loss”:

RL = −20 log |r| [dB]

Example

r=ytor(0.01) returns 0.333.

See also

rtoy(), rtoz(), rtoswr(), log10(), dB()

470

ztor()

Converts impedance to reflection coefficient.

Syntax

r=ztor(Z)

r=ztor(Z, Z0)

Arguments

Name Type Def. Range Required Default

Z R, C, Rn, Cn]−∞,+∞[
√

Z0 R, C]−∞,+∞[50

Description

For a real or complex impedance Z, this function calculates the corresponding reflection
coefficient according to

r =
Z − Z0

Z + Z0

For Z being a vector the equation above is applied to the components of Z.

If the reference impedance Z0 is not provided, the function assumes Z0 = 50Ω.

Often a dB measure is given for the reflection coefficient, the so called “return loss”:

RL = −20 log |r| [dB]

Example

r=ztor(100) returns 0.333.

See also

rtoz(), rtoy(), rtoswr(), log10(), dB()

471

15.5.3 N-Port Matrix Conversions

stos()

Converts S-parameter matrix to S-parameter matrix with different reference impedance(s).

Syntax

y=stos(S, Zref)

y=stos(S, Zref, Z0)

Arguments

Name Type Def. Range Required Default

S Rn×n, Cn×n |Sij| ∈]−∞,+∞[, 1 ≤ i, j ≤ n
|Sii| ≤ 1, 1 ≤ i ≤ n

√

Zref R, C, Rn, Cn]−∞,+∞[
√

Z0 R, C, Rn, Cn]−∞,+∞[50

Description

This function converts a real or complex scattering parameter matrix S into a scattering
matrix Y. S has a reference impedance Zref, whereas the created scattering matrix Y has
a reference impedance Z0.

If the reference impedance Z0 is not provided, the function assumes Z0 = 50Ω.

Both Zref and Z0 can be real or complex numbers or vectors; in the latter case the function
operates on the elements of Zref and Z0.

Example

Conversion of 50Ω terminated S-parameters to 100Ω terminated S-parameters:

S2=stos(eye(2)*0.1,50,100) returns
-0.241 0

0 -0.241
.

See also

twoport(), stoy(), stoz()

472

stoy()

Converts S-parameter matrix to Y-parameter matrix.

Syntax

Y=stoy(S)

Y=stoy(S, Zref)

Arguments

Name Type Def. Range Required Default

S Rn×n, Cn×n |Sij| ∈]−∞,+∞[, 1 ≤ i, j ≤ n
|Sii| ≤ 1, 1 ≤ i ≤ n

√

Zref R, C, Rn, Cn]−∞,+∞[50

Description

This function converts a real or complex scattering parameter matrix S into an admittance
matrix Y. S has a reference impedance Zref, which is assumed to be Zref = 50Ω if not
provided by the user.

Zref can be real or complex number or vector; in the latter case the function operates on
the elements of Zref.

Example

Y=stoy(eye(2)*0.1,100) returns
0.00818 0

0 0.00818
.

See also

twoport(), stos(), stoz(), ytos()

473

stoz()

Converts S-parameter matrix to Z-parameter matrix.

Syntax

Z=stoz(S)

Z=stoz(S, Zref)

Arguments

Name Type Def. Range Required Default

S Rn×n, Cn×n |Sij| ∈]−∞,+∞[, 1 ≤ i, j ≤ n
|Sii| ≤ 1, 1 ≤ i ≤ n

√

Zref R, C, Rn, Cn]−∞,+∞[50

Description

This function converts a real or complex scattering parameter matrix S into an impedance
matrix Z. S has a reference impedance Zref, which is assumed to be Zref = 50Ω if not
provided by the user.

Zref can be real or complex number or vector; in the latter case the function operates on
the elements of Zref.

Example

Z=stoz(eye(2)*0.1,100) returns
122 0
0 122

.

See also

twoport(), stos(), stoy(), ztos()

474

twoport()

Converts a two-port matrix from one representation into another.

Syntax

U=twoport(X, from, to)

Arguments

Name Type Def. Range Required

X R2×2, C2×2]−∞,+∞[
√

from Character {′Y ′, ′Z ′, ′H ′, ′G′, ′A′, ′S ′, ′T ′}
√

to Character {′Y ′, ′Z ′, ′H ′, ′G′, ′A′, ′S ′, ′T ′}
√

Description

This function converts a real or complex two-port matrix X from one representation into
another.

Example

Transfer a two-port Y matrix Y1 into a Z matrix:

Y1=eye(2)*0.1

Z1=twoport(Y1,’Y’,’Z’) returns
10 0
0 10

.

See also

stos(), ytos(), ztos(), stoz(), stoy(), ytoz(), ztoy()

475

ytos()

Converts Y-parameter matrix to S-parameter matrix.

Syntax

S=ytos(Y)

S=ytos(Y, Z0)

Arguments

Name Type Def. Range Required Default

Y Rn×n, Cn×n]−∞,+∞[
√

Z0 R, C, Rn, Cn]−∞,+∞[50

Description

This function converts a real or complex admittance matrix Y into a scattering parameter
matrix S. Y has a reference impedance Z0, which is assumed to be Z0 = 50Ω if not provided
by the user.

Z0 can be real or complex number or vector; in the latter case the function operates on
the elements of Z0.

Example

S=ytos(eye(2)*0.1,100) returns
-0.818 0

0 -0.818
.

See also

twoport(), stos(), ztos(), stoy()

476

ytoz()

Converts Y-parameter matrix to Z-parameter matrix.

Syntax

Z=ytoz(Y)

Arguments

Name Type Def. Range Required

Y Rn×n, Cn×n]−∞,+∞[
√

Description

This function converts a real or complex admittance matrix Y into an impedance matrix
Z.

Example

Z=ytoz(eye(2)*0.1) returns
10 0
0 10

.

See also

twoport(), ztoy()

477

ztos()

Converts Z-parameter matrix to S-parameter matrix.

Syntax

S=ztos(Z)

S=ztos(Z, Z0)

Arguments

Name Type Def. Range Required Default

Z Rn×n, Cn×n]−∞,+∞[
√

Z0 R, C, Rn, Cn]−∞,+∞[50

Description

This function converts a real or complex impedance matrix Z into a scattering parameter
matrix S. Z has a reference impedance Z0, which is assumed to be Z0 = 50Ω if not provided
by the user.

Z0 can be real or complex number or vector; in the latter case the function operates on
the elements of Z0.

Example

S=ztos(eye(2)*0.1,100) returns
-0.998 0

0 -0.998
.

See also

twoport(), twoport(), stos(), ytos(), stoz()

478

ztoy()

Converts Z-parameter matrix to Y-parameter matrix.

Syntax

Y=ztoy(Z)

Arguments

Name Type Def. Range Required

Z Rn×n, Cn×n]−∞,+∞[
√

Description

This function converts a real or complex impedance matrix Z into an admittance matrix
Y.

Example

Y=ztoy(eye(2)*0.1) returns
10 0
0 10

.

See also

twoport(), ytoz()

479

15.5.4 Amplifiers

GaCircle()

Circle(s) with constant available power gain Ga in the source plane.

Syntax

y=GaCircle(X,Ga,v)

y=GaCircle(X,Ga,n)

y=GaCircle(X,Ga)

Arguments

Name Type Def. Range Required Default

X R2×2×p, C2×2×p]−∞,+∞[
√

v Rn [0, 360]o

Ga R, Rm [0,+∞[
√

n N [2,+∞[64

Description

This function generates the points of the circle of constant available power gain GA in
the complex source plane (rS) of an amplifier. The amplifier is described by a two-port
S-parameter matrix S. Radius r and center c of this circle are calculated as follows:

r =

√
1− 2 ·K · gA · |S12S21|+ g2

A · |S12S21|2∣∣1 + gA ·
(
|S11|2 − |∆|2

)∣∣ and c =
gA (S∗11 − S22 ∆∗)

1 + gA
(
|S11|2 − |∆|2

) ,

where gA =
GA

|S21|2
and K Rollet stability factor. ∆ denotes determinant of S.

The points of the circle can be specified by the angle vector v, where the angle must be given
in degrees. Another possibility is to specify the number n of angular equally distributed
points around the circle. If no additional argument to X is given, 64 points are taken. The
available power gain can also be specified in a vector Ga, leading to the generation of m
circles, where m is the size of Ga.

Please also refer to “Qucs - Technical Papers”, chapter 1.5.

480

Example

v=GaCircle(S)

See also

GpCircle(), Rollet()

481

GpCircle()

Circle(s) with constant operating power gain Gp in the load plane.

Syntax

y=GpCircle(X,Gp,v)

y=GpCircle(X,Gp,n)

y=GpCircle(X,Gp)

Arguments

Name Type Def. Range Required Default

X R2×2×p, C2×2×p]−∞,+∞[
√

v Rn [0, 360]o

Gp R, Rm [0,+∞[
√

n N [2,+∞[64

Description

This function generates the points of the circle of constant operating power gain GP in
the complex load plane (rL) of an amplifier. The amplifier is described by a two-port
S-parameter matrix S. Radius r and center c of this circle are calculated as follows:

r =

√
1− 2 ·K · gP · |S12S21|+ g2

P · |S12S21|2∣∣1 + gP ·
(
|S22|2 − |∆|2

)∣∣ and c =
gA (S∗22 − S11 ∆∗)

1 + gP
(
|S22|2 − |∆|2

) ,

where gA =
GP

|S21|2
and K Rollet stability factor. ∆ denotes determinant of S.

The points of the circle can be specified by the angle vector v, where the angle must be given
in degrees. Another possibility is to specify the number n of angular equally distributed
points around the circle. If no additional argument to X is given, 64 points are taken. The
available power gain can also be specified in a vector Gp, leading to the generation of m
circles, where m is the size of Gp.

Please also refer to “Qucs - Technical Papers”, chapter 1.5.

Example

482

v=GpCircle(S)

See also

GaCircle(), Rollet()

483

Mu()

Mu stability factor of a two-port S-parameter matrix.

Syntax

y=Mu(S)

Arguments

Name Type Def. Range Required

S R2×2×p, C2×2×p,R2×2, C2×2]−∞,+∞[
√

Description

This function returns the Mu stability factor µ of an amplifier being described by a two-port
S-parameter matrix S :

µ =
1− |S11|2

|S22 − S∗11 ∆|+ |S21S12|

∆ denotes determinant of S.

The amplifier is unconditionally stable if µ > 1.

For S being a vector of matrices the equation above is applied to the sub-matrices of S.

Example

m=Mu(S)

See also

Mu2(), Rollet(), StabCircleS(), StabCircleL()

484

Mu2()

Mu’ stability factor of a two-port S-parameter matrix.

Syntax

y=Mu2(S)

Arguments

Name Type Def. Range Required

S R2×2×p, C2×2×p,R2×2, C2×2]−∞,+∞[
√

Description

This function returns the Mu’ stability factor µ′ of an amplifier being described by a two-
port S-parameter matrix S :

µ′ =
1− |S22|2

|S11 − S∗22 ∆|+ |S21S12|

∆ denotes determinant of S.

The amplifier is unconditionally stable if µ′ > 1.

For S being a vector of matrices the equation above is applied to the sub-matrices of S.

Example

m=Mu2(S)

See also

Mu2(), Rollet(), StabCircleS(), StabCircleL()

485

NoiseCircle()

Generates circle(s) with constant Noise Figure(s).

Syntax

y=NoiseCircle(Sopt,Fmin,Rn,F,v)

y=NoiseCircle(Sopt,Fmin,Rn,F,n)

y=NoiseCircle(Sopt,Fmin,Rn,F)

Arguments

Name Type Def. Range Required Default

Sopt Rn, Cn]−∞,+∞[
√

Fmin Rn [1,+∞[
√

Rn Rn, Cn [0,+∞[
√

F R, Rn [1,+∞[
√

v Rn [0, 360]o

n N [2,+∞[64

Description

This function generates the points of the circle of constant Noise Figure (NF) F in the
complex source plane (rS) of an amplifier. Generally, the amplifier has its minimum NF
Fmin, if the source reflection coefficient rS = Sopt(noise matching). Note that this state
with optimum source reflection coefficient Sopt is different from power matching ! Thus
power gain under noise matching is lower than the maximum obtainable gain. The values
of Sopt, Fminand the normalised equivalent noise resistance Rn/Z0can be usually taken from
the data sheet of the amplifier.

Radius r and center c of the circle of constant NF are calculated as follows:

r =

√
N2 +N ·

(
1− |Sopt|2

)
1 +N and c =

Sopt
1 +N

, with N =
F − Fmin

4Rn

·Z0 · |1 + Sopt|2 .

The points of the circle can be specified by the angle vector v, where the angle must be given
in degrees. Another possibility is to specify the number n of angular equally distributed
points around the circle. If no additional argument to X is given, 64 points are taken.

Please also refer to “Qucs - Technical Papers”, chapter 2.2.

486

Example

v=NoiseCircle(Sopt,Fmin,Rn,F)

See also

GaCircle(), GpCircle()

487

PlotVs()

Returns a data item based upon vector or matrix vector with dependency on a given
vector.

Syntax

y=PlotVs(X, v)

Arguments

Name Type Def. Range Required

X Rn, Cn, Rm×n×p, Cm×n×p]−∞,+∞[
√

v Rn, Cn]−∞,+∞[
√

Description

This function returns a data item based upon a vector or matrix vector X with dependency
on a given vector v.

Example

PlotVs(Gain,frequency/1E9).

See also

488

Rollet()

Rollet stability factor of a two-port S-parameter matrix.

Syntax

y=Rollet(S)

Arguments

Name Type Def. Range Required

S R2×2×p, C2×2×p,R2×2, C2×2]−∞,+∞[
√

Description

This function returns the Rollet stability factor K of an amplifier being described by a
two-port S-parameter matrix S :

K =
1− |S11|2 − |S22|2 + |∆|2

2 |S21| |S12|

∆ denotes determinant of S.

The amplifier is unconditionally stable if K > 1 and |∆| < 1.

Note that a large K may be misleading in case of a multi-stage amplifier, pretending
extraordinary stability. This is in conflict with reality where a large gain amplifier usually
suffers from instability due to parasitics.

For S being a vector of matrices the equation above is applied to the sub-matrices of S.

Example

K=Rollet(S)

See also

Mu(), Mu2(), StabCircleS(), StabCircleL()

489

StabCircleL()

Stability circle in the load plane.

Syntax

y=StabCircleL(X)

y=StabCircleL(X,v)

y=StabCircleL(X,n)

Arguments

Name Type Def. Range Required Default

X R2×2×p, C2×2×p]−∞,+∞[
√

v Rn [0, 360]o

n N [2,+∞[64

Description

This function generates the stability circle points in the complex load reflection coefficient
(rL) plane of an amplifier. The amplifier is described by a two-port S-parameter matrix S.
Radius r and center c of this circle are calculated as follows:

r =

∣∣∣∣ S21 S12

|S22|2 − |∆|2

∣∣∣∣ and c =
S∗22 − S11 ·∆∗

|S22|2 − |∆|2

∆ denotes determinant of S.

The points of the circle can be specified by the angle vector v, where the angle must be given
in degrees. Another possibility is to specify the number n of angular equally distributed
points around the circle. If no additional argument to X is given, 64 points are taken.

If the center of the rLplane lies within this circle and |S11| ≤ 1 then the circuit is stable
for all reflection coefficients inside the circle. If the center of the rLplane lies outside the
circle and |S11| ≤ 1 then the circuit is stable for all reflection coefficients outside the circle
(please also refer to “Qucs - Technical Papers”, chapter 1.5).

Example

v=StabCircleL(S)

490

See also

StabCircleS(), Rollet(), Mu(), Mu2()

491

StabCircleS()

Stability circle in the source plane.

Syntax

y=StabCircleS(X)

y=StabCircleS(X,v)

y=StabCircleS(X,n)

Arguments

Name Type Def. Range Required Default

X R2×2×p, C2×2×p]−∞,+∞[
√

v Rn [0, 360]o

n N [2,+∞[64

Description

This function generates the stability circle points in the complex source reflection coefficient
(rS) plane of an amplifier. The amplifier is described by a two-port S-parameter matrix S.
Radius r and center c of this circle are calculated as follows:

r =

∣∣∣∣ S21 S12

|S11|2 − |∆|2

∣∣∣∣ and c =
S∗11 − S22 ·∆∗

|S11|2 − |∆|2

∆ denotes determinant of S.

The points of the circle can be specified by the angle vector v, where the angle must be given
in degrees. Another possibility is to specify the number n of angular equally distributed
points around the circle. If no additional argument to X is given, 64 points are taken.

If the center of the rSplane lies within this circle and |S22| ≤ 1 then the circuit is stable
for all reflection coefficients inside the circle. If the center of the rSplane lies outside the
circle and |S22| ≤ 1 then the circuit is stable for all reflection coefficients outside the circle
(please also refer to “Qucs - Technical Papers”, chapter 1.5).

Example

v=StabCircleS(S)

492

See also

StabCircleL(), Rollet(), Mu(), Mu2()

493

16 Component, compact device and
circuit modelling using symbolic
equations

16.1 Introduction

Qucs releases 0.0.11 and 0.0.12 mark a turning point in the development of the Qucs
component and circuit modelling facilities. Release 0.0.11 introduced component values
defined by equations and for the first time allowed subcircuits with parameters. Release
0.0.12 extends these features to add model development using symbolic equations that are
similar to compact device code written in the Verilog-A modelling language. In designing
the latest Qucs modelling features the Qucs team has made a central focus of their work
the need to provide the package with an interactive and easy to use modelling system
which allows fast model prototype construction. Much of these new aspects have up to
now been undocumented and are likely to be very new to most Qucs users. The aim of
this tutorial note is to outline the background to these important package extensions and
to provide real help to Qucs users who are interested in writing and experimenting with
their own models. The text includes a number of illustrative examples for readers to try
and experiment with.

16.2 Qucs electronic device and circuit modelling

Circuit simulation packages are complex software systems which often take years to ma-
ture to a stage where they are capable of analysing the current generation of integrated
and discrete electronic circuits. Most circuit simulators have a number of common basic
attributes; firstly circuits are represented by a textual netlist or a schematic diagram which
contains all the information required by a simulator to analyse the performance of a circuit,
and secondly a simulation engine which undertakes the calculation of circuit performance
in one or more different circuit domains such as DC, AC or transient, and thirdly a post
simulation processing system which structures and displays the simulation data in both

494

tabular and graphical forms. All circuit simulators have one other important attribute,
namely that they represent individual electronic components by a model, or abstraction,
in a way that can be understood and analysed by the simulation engine when undertaking
a simulation task. Without component models the science of circuit simulation would not
have developed to the stage it has today. From a users point of view component models
are the key to simulator productivity; the greater the number of different models the easier
it becomes to analyse mixed analogue and digital electronic systems.

Shown in Fig. 16.1 is a block diagram of the analogue component modelling and simulation
facilities currently provided by the Qucs package. The diagram is structured as a flow chart
which emphasises the different device modelling routes. When Qucs was first released only
two of these were available for users to develop new device models. The first of these
has been used extensively by the package developers to construct the built-in models that
are distributed with each Qucs release. This fundamental route involves hand coding
the C++ code for a new model1, its compilation and linking with the core Qucs C++
code. Obviously, this does require a specialised knowledge of the Qucs model programming
interface2, the necessary C++ skills, including a good working knowledge of the Trolltech
Qt toolkit3. At the time of writing these notes the latest device to be added to Qucs
using this approach is the exponential pulse source4. Models based on hand written C++
code are normally restricted to basic devices that form the fundamental component core
of a simulator - particularly where simulation computational efficiency is important. One
disadvantage of this approach, is the obvious one, in that the time to implement a new
model increases disproportionately with increasing model complexity. For most Qucs users
this route would not be the most natural to use when developing new models. However, for
the specialist who spends a significant amount of time researching new device models this
has always in the past, been the route of choice. Unfortunately, modern semiconductor
device models are becoming so complex that the model development time can stretch
into months or even years and requires typically thousands of lines of C or C++ code to
characterise a model5. With the more complex models the problem of finding bugs in the
model code also acts as a limit to fast model development.

For the average Qucs user their first introduction to the software is probably through
constructing circuit schematics made entirely from the standard component models built

1The technical details of the built-in models are described in: Qucs Technical Papers, Stefan Jahn, Michael
Margraf, Vincent Habchi and Raimund Jacob, http://qucs.sourceforge.net/technical.html.

2Writing the documentation for the Qucs model programming interface is on the to do list and will be
completed, when time allows, sometime in the future.

3Qt is a registered trademark of Trolltech, Norway; http://www.trolltech.com/copyright.
4Added by Gunther Kraut on 15 April 2007. This device has been added for compatibility with SPICE.
5A good introduction to writing compact device models is given in “How to (and how not to) write a

compact model in Verilog-A”, Geoffrey J. Coram, 2004, Proc. 2004 IEEE International Behavioral
Modeling and Simulation Conference (BMAS 2004), pp 97- 106.

495

http://qucs.sourceforge.net/technical.html
http://www.trolltech.com/copyright

QUCS GUI
Circuit

entered using
schematic capture

C++ code

Schematic
capture
symbols

SPICE
preprocessor

Nonlinear equation
defined devices

Component
data processing

using Qucs
equations

User
defined
subcircuit
schematic
capture
symbol

Simulation output data

QUCSATOR

C++ component code
compiled and linked
to Qucsator core C++
code via API

User defined
subcircuits

Qucs
components

Simulate

Symbolic
equations

Post simulation
data processing
using Qucs
equations

Qucs plots
and tables

Hand coded
device model
C++ code

ADMS
compiler

Verilog-A
Compact
device
code

SPICE
netlist

SPICE
parameterised

netlist

Qucs
Library

components

Generate Qucs netlist code
from GUI schematic, including
conversion of SPICE code to
Qucs format

Qucs Tools:
Line Calculator
Attenuator Design
Matching Circuits
Filter Design

Figure 16.1: Qucs analogue component modelling and simulation block diagram (not in-
cluding optimisation)

496

into the package and the testing of their performance by launching the simulator from
one of the Qucs simulation icons.6 The next natural stage in the Qucs modelling and
simulation learning curve is the use of subcircuits where groups of built-in components are
collected together to form a higher level circuit block. These blocks are often arranged with
a common theme, forming a Qucs library. The process of modelling new devices/circuits
is normally done by connecting existing component models and user defined subcircuits.
With this type of modelling higher level functional models can only be constructed from
existing fundamental components or previously constructed subcircuits. Engineers often
call this approach to modelling, macromodelling. Qucs releases up to 0.0.10 relied on
macromodelling for functional model development via the Qucs schematic interface. This
route remains popular amongst most Qucs users because it is easy to understand, is fully
interactive and allows straight forward testing of new models. One feature that is common
to all components included in Qucs releases up to 0.0.10 may not be immediately obvious to
readers, namely that, with the exception of sweep variables, component values could only
be numbers, for example R1 = 1k, and were not allowed to be represented by algebraic
expressions like R1 = Value1, where Value1 = 100.0+50 ·X. Its also worth pointing out at
this point that during simulation, again performed by Qucs releases up to 0.0.10, component
values were required to remain constant and could not be a function of the circuit variables
such as voltage, current or charge.

One way to remove the component value restrictions imposed by early Qucs releases is
to model devices and circuits using preprocessor extended forms of the SPICE netlist
language. Circuit design equations can then be embedded in SPICE netlists and the
calculation of component values completed by the SPICE preprocessor. Both the SPICE
to Qucs and OP AMP tutorials7 outline in detail the steps required to merge circuit design
and simulation in this way. This modelling route is a very important and powerful model
development tool. So much so that ongoing tests to identify how compatible Qucs is with
the industrial standard SPICE 2g6 and 3f5 syntax are currently being undertaken as part
of the Qucs development schedule8. Although perfectly viable as a model development
tool the use of an extended SPICE netlist language has a number of serious disadvantages,
namely that not all the Qucs built-in component models have equivalent SPICE models
and secondly text netlists are the only entry medium for describing models.

The previous paragraphs give a brief statement of the different component modelling routes
that were available up to release 0.0.11. Qucs 0.0.11 is very much a modelling water shed in

6The “Getting Started with Qucs” tutorial by Stefan Jahn outlines a number of basic simulation tech-
niques; http://qucs.sourceforge.net/docs.html.

7Qucs simulation of SPICE netlists and Modelling Operational Amplifiers, Mike Brinson, http://qucs.
sourceforge.net/docs.html.

8Qucs: Report Book; SPICE to Qucs test reports, Mike Brinson, http://qucs.sourceforge.net/docs.
html.

497

http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html

that symbolic equations were introduced for the calculation of component values, previously
equations were only allowed when structuring simulation output data for post simulation
listing or plotting. Release 0.0.11 allows the following types of variable;

1. sweep variables,

2. equations left hand side,

3. component parameter’s left hand side (e.g. R1.R),

4. subcircuit parameters and

5. simulation output data.

With each Qucs release the number of analysis functions, and other data processing fea-
tures, included in the Qucs equation set continues to expand9. From release 0.0.11 pa-
rameters are also allowed with subcircuits so that data can be passed to a model. This
allows generalised subcircuit/macromodels to be developed for popular devices such as op-
erational amplifiers. Through the use of embedded design equations within subcircuits and
parameter passing it became possible to construct powerful models that mix both circuit
design procedures and the calculation of individual component values. Qucs 0.0.11 still
imposed the restriction that equations could not be functions of voltage, current or charge.

With the release of Qucs 0.0.12 the voltage, current and charge restrictions imposed on
equations will finally be relaxed. The introduction of a new device modelling component
called the equation defined device (EDD) allows firstly device current to be formulated as
a function of voltage, and secondly device charge to be calculated as a function of voltage
and current. The syntax adopted for the new model borrows heavily on the compact device
modelling approach taken by the Verilog-A modelling language.

Some readers will probably have noted that so far these notes make no reference to the
ADMS model development route illustrated in Fig. 16.1. ADMS stands for Automated
device model synthesizer10 and includes a Verilog-A to C/C++ compiler. It allows compact
device models to be described in the Verilog-A language then compiled to C/C++ and
the resulting code linked with the Qucs core simulation code11. Model development using
ADMS is similar to the fundamental hand coded C++ model development route except that
model development is greatly simplified by the power of the high level Verilog-A language.
A strong relationship exists between the ADMS and EDD modelling procedures in that

9See Measurement Expressions Reference Manual, Gunther Kraut and Stefan Jahn, http://qucs.
sourceforge.net/docs.html.

10L.Lemaitre, C.C. McAndrew, and S. Hamm, ADMS - Automated Device Model Synthesizer, Proc. IEEE
CICC, 2002.

11For more details see, Qucs Description: Verilog-AMS interface, Stefan Jahn and Hélène Parruitte,
http://qucs.sourceforge.net/docs.html.

498

http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html

EDD can be considered a fast interactive model prototyping method whose equations can
easily be expressed in Verilog-A and compiled into C/C++ code for permanent inclusion
in the Qucs simulator12.

The opening paragraphs attempt to outline the available device modelling techniques that
are central to the functioning of the Qucs package. The remaining sections of this tutorial
note are devoted to illustrating the power of Qucs modelling through the introduction of a
number of illustrative examples. Initially these start from a simple, and hopefully familiar,
point and then proceed to more complex examples which present many of the concepts
lightly touched upon in the opening text.

16.3 Extending circuit simulation capabilities with
equations

Just adding component value calculations, via equations, to a circuit simulator immediately
increases the underlying design and simulation capabilities way beyond that found in earlier
generation simulators. Consider the simple RC circuit shown in Fig. 16.2. Capacitor Cap
is stepped from 0.1µF to 1.1µF and the small signal AC response of the network calculated.
In this example the values for both R1 and Cap are given as numeric values. The simulation
test shows the effect of stepping the value of one component through a series of values and
recording the effect of component changes on circuit performance. In other words this is a
classical circuit analysis use of a circuit simulator. In a real design situation different data
is often required. Most designers would prefer to find the value of Cap that gives a specific
RC cut-off frequency (fc) for a specified value of R1. This is the type of investigative
problem where adding equations into the simulation process generates more informative
results. Shown in Fig. 16.3 is a similar RC network to that illustrated in Fig. 16.2.

Capacitor voltage V Cap is given by:

VCap =
V1√

1 + ω2 ·C2
1 ·R2

1

(16.1)

where the cut-off frequency in the voltage transfer function is

fc =
1

2π ·R1 ·C1

(16.2)

Hence, by expressing Cap as a function of fc and stepping fc through a range of frequencies,
the effect of capacitance changes on the voltage transfer function can be found. More

12Appendix A gives an operator and function comparison table for Qucs and Verilog-A.

499

importantly a nomogram of Cap values against fc can be plotted giving the circuit designer
a visual aid for determing the value of Cap required for given values of R1 and fc. Although
the circuits shown in Figs. 16.2 and 16.3 are very basic they do demonstrate how much
more powerful a circuit simulator becomes when component values are calculated using
equations.

16.3.1 Low pass active filter design with embedded design equations

In this section a more advanced circuit design example is introduced to illustrate the power
of embedded design equations in a Qucs simulation schematic. A second order Sallen-Key
low pass filter is employed for this task because it is so well known and most readers are
likely to have met it’s design in the past. A second order low pass filter is represented by
the voltage transfer function:

A(S) =
Vout
Vin

=
A0

(1 + a2 ·S + b2 ·S2)
(16.3)

where A0 is the passband DC gain and coefficients a2, b2 are for Bessel, Butterworth,
Tschebyscheff or similar polynomials.

The following list13 gives the second order coefficients for the Bessel → 1.3617, 0.618;
Butterworth→ 1.4142, 1.000; and 3dB ripple Tschebyscheff→ 1.065, 1.9305, polynomials.
The second order Sallen-Key low pass filter circuit is shown in Fig. 16.4. This circuit has
a voltage gain transfer function given by:

A(S) =
A0

1 + ωc · [C1 · (R1 +R2) + (1− A0) ·R1 ·C2] ·S + ω2
c ·R1 ·R2 ·C1 ·C2 ·S2

(16.4)

where

A0 = 1 +
R3

R4

(16.5)

This can be simplified by letting R1 = R2 = R and C1 = C2 = C; the transfer function
then becomes:

13See OP Amps for everyone, Chapter 16: Active filter design technology, Texas Instruments, August
2002, SL0D006B, PP 16.1,16.63.

500

V1
U=1 V

C1
C=Cap

Parameter
sweep

SW1
Sim=AC1
Type=lin
Param=Cap
Start=0.1u
Stop=1.1u
Points=11

ac simulation

AC1
Type=log
Start=1Hz
Stop=1 MHz
Points=61

R1
R=1k

VCap

1 10 100 1e3 1e4 1e5 1e6

0

0.5

1

acfrequency

V
C

ap
.v

2 4 6 8 10
0

5e-7

1e-6

number

C
ap

Figure 16.2: A simple RC circuit simulation using numerical component values

501

V1
U=1 V

C1
C=CapR1

R=Rvalue

Parameter
sweep

SW1
Sim=AC1
Type=log
Param=fc
Start=10
Stop=1000
Points=21

ac simulation

AC1
Type=log
Start=1Hz
Stop=1 MHz
Points=61

Equation

Eqn1
Rvalue=1000
Cap=1/(2*pi*Rvalue*fc)

VCap

1 10 100 1e3 1e4 1e5 1e6

0

0.5

1

acfrequency

V
C

ap
.v

10 100 1e3
1e-7

1e-6

1e-5

fc

C
ap

Figure 16.3: A simple RC circuit simulation employing equation determined component
values

502

-

+

OPA27(TI)

VCC

VEE

SUB1

V2
U=15 V

V3
U=15 V

V1
U=1 V R2R1

C1

C2

R3 R4

Vout

Figure 16.4: The Sallen-Key lowpass active filter circuit

A(S) =
A0

1 + [ωc ·R ·C · (3− A0)] ·S +
[
(ωc ·R ·C)2] ·S2

. (16.6)

By comparison

a2 = ωc ·R ·C · (3− A0) (16.7)

and

b2 = (ωc ·R ·C)2 (16.8)

Fixing C and solving for R and A0, yields

R =

√
b2

ωc ·C
, and A0 = 3− a2√

b2
. (16.9)

Also once A0 is known the value for R4 can be calculated using equation

A0 = 1 +
R3

R4
. (16.10)

Hence by providing values for C and R3 the values for R and A0, and of course R4, can be
determined for a specified cut off frequency fc. Figure 16.5 shows the final design schematic
and the simulation results for this example. A number of important observations can be
made from Fig. 16.5:

503

-

+

OPA27(TI)

VCC

VEE

SUB1

V2
U=15 V

V3
U=15 V

V1
U=1 V R2

R=R
R1
R=R

C2
C=C

C1
C=C

R3
R=R3_calc

R4
R=R4_calc

Equation

Eqn1
C=22e-9
a2=1.065
b2=1.9305
fc=3000
R=sqrt(b2)/(2*pi*fc*C)
A0=3-a2/(sqrt(b2))
R3_calc=4700
R4_calc=(A0-1)*R3_calc
gain_dB=dB(Vout.v)
gain_phase=rad2deg(unwrap(angle(Vout.v)))

ac simulation

AC1
Type=log
Start=1 Hz
Stop=100 kHz
Points=101

dc simulation

DC1

Vout

1 10 100 1e3 1e4 1e5

0

2

4

acfrequency

V
ou

t.v

1 10 100 1e3 1e4 1e5

-200

-100

0

acfrequency

ga
in

_p
ha

se

1 10 100 1e3 1e4 1e5

-50

0

acfrequency

ga
in

_d
B

Figure 16.5: The Sallen-Key lowpass active filter schematic with embedded design equa-
tions

504

1. One or more equation blocks hold both design and post simulation data processing
equations plus assignments for named items: C, fc and R3 are given numerical
values, the a and b polynomial coefficients are set to the values introduced in the
text, and finally the design equations for R, A0 and R4 calculations are listed.

2. The order of entries in equation blocks is not important because Qucs automatically
sorts out the data it requires when calculating equations.

3. The lefthand quantities in the assignment entries in the equation blocks are linked
to the component values in the schematic, see for example C and R.

4. The OP27 operational amplifier model is from the modified Qucs 0.0.11 OPAMP
library. This model was generated using the SPICE to Qucs modelling route.

5. To design and simulate a Sallen-Key low pass filter with a different cut off frequency14

simply change the value of fc and rerun the Qucs simulator.

6. On completion of a simulation, pressing key F5 (Show last messages) causes the
simulation log to be displayed. This includes the calculated values of the components
and the netlist for the circuit, see Fig. 16.6.

7. One final point of significance that some readers may have noticed - all numerical
values in equation blocks must be specified in scientific notation; electronic notation
like 1k or 3nF is not allowed15.

14If the design calculations result in impractical values for the filter components then the value of C should
be changed and the simulation repeated.

15In long term it is expected that electronic notation will be allowed. The changes for this are on the to
do list but at the moment the work has a low priority.

505

Output :
−−−−−−−
n e t l i s t content

13 R i n s t a n c e s
5 C i n s t a n c e s
2 VCCS i n s t a n c e s
5 CCCS i n s t a n c e s
2 VCVS i n s t a n c e s
1 CCVS i n s t a n c e s
8 Vdc i n s t a n c e s
1 Idc i n s t a n c e s
1 Vac i n s t a n c e s
4 Diode i n s t a n c e s
2 BJT i n s t a n c e s
1 DC i n s t a n c e s
1 AC i n s t a n c e s

c r e a t i n g n e t l i s t . . .
checker not i ce , v a r i a b l e ‘ Vout . v ’ in equat ion ‘ ga in dB’ not yet de f ined
checker not i ce , v a r i a b l e ‘ Vout . v ’ in equat ion ‘ ga in phase ’ not yet de f ined
kB = 1 . 38065e−23
e = 2 . 71828
p i = 3 . 14159
C = 2 . 2e−08
a2 = 1 . 065
b2 = 1 . 9305
f c = 3000
R = 3350 . 51
A0 = 2 . 2335
R3 c a l c = 4700
R4 c a l c = 5797 . 43
kB = 1 . 38065e−23
e = 2 . 71828
p i = 3 . 14159
kB = 1 . 38065e−23
e = 2 . 71828
p i = 3 . 14159
kB = 1 . 38065e−23
e = 2 . 71828
p i = 3 . 14159

Figure 16.6: Message output log for the simulation of the Sallen-key low pass circuit: for
brevity only the component value section is given

506

16.4 Introduction to Qucs subcircuit parameters

Subcircuits are a concept that has been part of the simulation scene for a long time. All
circuit simulators based on SPICE have subcircuits as part of their basic device compliment.
This is not surprising because they form a natural way of breaking an electronic system
down into a number of smaller self contained functional blocks. What is surprising however,
is the fact that a significant number of simulators, including SPICE 2g6 and 3f516, do not
allow parameters to be passed to a subcircuit. Parameter passing appears to have been
first introduced when a number of the popular commercial circuit simulators were being
developed17. Qucs releases up to version 0.0.10 are similar to SPICE in that they also did
not allow parameters with subcircuits.

This very important limitation has been removed with release 0.0.11, which allows param-
eters to be attached to component symbols and used in subcircuit equation calculations.
Shown in Fig. 16.7 are the circuit schematic and user generated symbol for a simple har-
monic generator with a fundamental and three harmonic sinusoidal components. Param-
eters f1 to f4 determine these frequency components. Notice that an equation block, at
the circuit schematic level, is used to calculate the harmonic frequencies. Parameters ph1
to ph4 set the phase of the individual sinusoidal oscillators. The process of attaching pa-
rameters, and their default values, to a subcircuit symbol is straightforward; simply right
click on the symbol subcircuit name, SUB1 in Fig. 16.7, and an Edit Subcircuit Properties
dialog box appears allowing parameter names and their default values to be entered18.
Subcircuit parameters and their values are normally displayed as a list underneath the
subcircuit name. Changing parameter values is done in a similar fashion to changing the
values of the standard built-in components. The diagram and simulation results illustrated
in Fig. 16.8 show a waveform formed from a fundamental and two harmonics.

An equation block is employed to calculate and plot the amplitude and power spectral
densities of the harmonic waveform. By changing the fundamental frequency, signal am-
plitudes and phases different wave shapes can be generated by resimulating the circuit. In
this example transient analysis is used to generate the harmonic waveform with the run
time set to 10ms and the number of points equal to 50019. This gives a sampling time of
20µs and a sampling frequency of 50kHz. Equation block Eqn1 demonstrates how the Qucs
functions20 can be used to postprocess simulation generated data - in this example they

16One of the reasons SPICE preprocessors were developed was to allow parameter passing to subroutines,
for more details see Qucs Tutorial: Qucs simulation of SPICE netlists, Mike Brinson, http://qucs.
sourceforge.net/.

17See, for example, the extended netlist format originally designed by the MicroSim Corporation for the
PSpice circuit simulator.

18See Appendix B for a more detailed description of the procedure.
19Qucs function length() determines the correct data length in equation block Eqn1 calculations.
20If you have used a program like Octave, or indeed Matlab, many of these functions should be familiar

507

http://qucs.sourceforge.net/
http://qucs.sourceforge.net/

P_sig
V1
U=f1_amp
f=f1
Phase=ph1

V2
U=f2_amp
f=f2
Phase=ph2

V4
U=f4_amp
f=f4
Phase=ph4

V3
U=f3_amp
f=f3
Phase=ph3

Equation

Eqn1
f2=2*f1
f3=3*f1
f4=4*f1

HG1

SUB1
f1=1000
f1_amp=1.0
f2_amp=0.0
ph1=0.0
ph2=0.0
f3_amp=0.0
f4_amp=0.0
ph3=0.0
ph4=0.0

Figure 16.7: Harmonic generator subcircuit schematic and symbol

are used to compute the DFT of the harmonic generator waveform, convert the resulting
spectra from double sided to single sided form, compute and plot the amplitude and power
spectral densities.

to you. These functions provide Qucs with powerful numerical resource which significantly extends the
range of problems that Qucs can analyse.

508

HG1

SUB1
f1=1000
f1_amp=5.0
f2_amp=2.0
ph1=0
ph2=0
f3_amp=2
f4_amp=0
ph3=0
ph4=90

R1
R=50 Ohm

transient
simulation

TR1
Type=lin
Start=0
Stop=10 ms
Points=500

Equation

Eqn1
ts=(max(time)-min(time))/length(time)
fs=1/ts
Adft=dft(hg_sig.Vt)
LAdft=length(hg_sig.Vt)
Amp2=2*Adft[1:(LAdfto2)-1]
LAdfto2=LAdft/2
Amp_squared=Adft[:LAdfto2]*conj(Adft[:LAdfto2])
Amp=sqrt(Amp_squared)
f_bin=linspace(1, LAdfto2, LAdfto2)
f=(f_bin-1)*fs/LAdft
PLAmp=PlotVs(2*Amp/LAdft,f)
PLPower=PlotVs(4*Amp*Amp/(LAdft*LAdft),f)

hg_sig

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-5

0

5

time

hg
_s

ig
.V

t

0 5e3 1e4 1.5e4 2e4 2.5e4

0

10

20

30

Frequency Hz

P
ow

er
 S

pe
ct

ra
l d

en
si

ty
 (V

^2
)

P
LP

ow
er

0 5e3 1e4 1.5e4 2e4 2.5e4

0

2

4

6

Frequency Hz

A
m

pl
itu

de
 S

pe
ct

ra
l d

en
si

ty
 (V

)
P

LA
m

p

Figure 16.8: Harmonic generator subcircuit test circuit and simulation waveforms

509

16.5 Building universal macromodels using subcircuits
and parameters

Passing parameters to subcircuits allows universal macromodels to be built. One obvious
application of this technique is the modelling of operational amplifiers (OP AMP) and other
integrated circuits. The approach adopted is similar to that outlined in the last section.
However, because of the complexity of the models it is advisable to break a model into a
series of smaller blocks. These are then combined to form a complete subcircuit macro-
model. Two techniques are possible when partitioning models, these are demonstrated
next. Shown in Fig. 16.9 is a simple AC OP AMP model21 consisting of an input stage,
an intermediate gain stage and an output stage22. An equation block, if needed, is asso-
ciated with each stage. These blocks contain the equations for calculating the component
values in a given stage. A single schematic symbol represents the model. This has a list of
parameters attached. The flow of information into a macromodel starts with parameters
passed into a subcircuit, via a schematic symbol, then onto the equation blocks, where it is
finally used to calculate the component values. Hence, by simply changing the subcircuit
parameters different OP AMPs can be simulated using a single generalised macromodel.
However, please note that different OP AMP circuit structures, or indeed technologies, nat-
urally result in a series of generalised subcircuit macromodels to cover all possible types in
a given device family. The second technique involves breaking a model down into smaller
blocks and associating subcircuit symbols with each block. This approach is illustrated
in Fig. 16.10. Again parameters are passed from the top level symbol (called AC in the
schematic) to the inner subcircuits. These pass their own parameters down a subcircuit
level where the component calculations are completed. The second technique results in two
levels of subcircuit, accounting for the change in parameter name when passing a parame-
ter from top to lower hierarchy. A second more detailed example showing how to construct
nested subcircuits is presented later in these notes.

In reality the macromodel for a typical OP AMP that models DC, AC and transient
domains is much more complex than the model given in Fig. 16.9. The schematic for a
typical multi-domain OP AMP modular macromodel is shown in Fig. 16.11, where each
section of the macromodel is represented, if needed, by it’s own equation block.

The test schematics shown in Figures. 16.12 and 16.13 show two OP AMPs with different
subcircuit parameters. In Fig. 16.12 the small signal characteristics of unity gain closed

21The term AC here refers to the fact that the OP AMP model chosen for demonstration purposes is a
simplified version of a multi-domain OP AMP model. It only models small signal AC parameters and
device input stage bias and offset properties.

22The schematic shown in Fig. 16.9 forms part of a modular OP AMP macromodel. A detailed description
of the function of individual networks and the derivation of the component equations is given in Qucs
tutorial Modelling Operational Amplifiers, Mike Brinson, http://qucs.sourceforge.net/docs.html.

510

http://qucs.sourceforge.net/docs.html

P_INN1

Voff1
U=voff1

Ib1
I=ib

Ib2
I=ib

Ioff1
I=ioff1

R1
R=r1

R2
R=r2

Cin1
C=cd

P_INP1

Voff2
U=voff2

EOS1
G=1

ROS1
R=ro

P_OUT1

Equation

Eqn1
voff1=voff/2
voff2=voff/2
ioff1=ioff/2
r1=rd/2
r2=rd/2

RSRT1
R=1

GMSRT1
G=0.01 S

GMP1
G=1 S

CP1
C=cp1

RADO1
R=aoldc

Equation

Eqn2
cp1=1/(2*pi*gbp)

AC
-
+

SUB1
voff=0.7e-3
ioff=80e-3
rd=2e6
cd=1.4e-12
aoldc=200e3
gbp=1e6
ro=75

Input Stage

Intermediate gain stage

Output stage

Figure 16.9: Expanded AC OP AMP model showing circuitry and equation blocks

loop amplifiers clearly show the difference in performance of the OP AMPs. Figure 16.13 is
particularly interesting in that it illustrates how Qucs can be used to determine the effect
of amplifier offset voltage on integrator DC saturation by stepping resister rp through
a series of values. The low offset voltage of the OP27 makes this device much more
suitable for integrator circuits when compared to the popular UA741. These results can
be confirmed by a simple calculation: the offset voltage for the UA741 is set at 0.7 mV
and the amplifier open loop DC gain at roughly 200, 000. The UA741 goes into saturation
when rp is approximately 20 MΩ. In saturation the OP AMP gain becomes open loop
giving a DC output voltage of roughly 0.7e-3 · 2e5 or 14 V, which agrees with the Qucs
simulation results.

511

ON

Input
Stage

OP

IN

IP

SUB2
voff=v_off
ioff=i_off
rd=r_d
ib=i_b
cd=c_d

IN

Inter
stage

IP

O

SUB3
gbp=g_bp
aoldc=a_oldc

P_INN1

P_INP1

P_OUT1

P_INN2

Voff1
U=voff1

Ib1
I=ib

Ib2
I=ib

Ioff1
I=ioff1

R1
R=r1

R2
R=r2

Cin1
C=cd

P_INP2

Voff2
U=voff2

Equation

Eqn1
voff1=voff/2
voff2=voff/2
ioff1=ioff/2
r1=rd/2
r2=rd/2

P_INP3

P_INN3

RSRT1
R=1

GMSRT1
G=0.01 S

GMP1
G=1 S

RADO1
R=aoldc

Equation

Eqn2
cp1=1/(2*pi*gbp)

P_OUT2

P_INP4

P_INN4

-
AC

+

SUB1
v_off=0.7e-3
i_off=20e-9
r_d=2e6
c_d=1.4e-12
i_b=80e-9
g_bp=1e6
a_oldc=200e3
r_o=75

ON

Input
Stage

OP

IN

IP

SUB7
voff=v_off
ioff=i_off
rd=r_d
ib=i_b
cd=c_d

IN

Inter
stage

IP

O

SUB8
gbp=g_bp
aoldc=a_oldc

EOS1
G=1

PO1 ROS1
R=ro

P_OUT3

IN O

output

Stage

SUB4
ro=r_o

IN O

output

Stage

SUB9
ro=r_o

CP1
C=cp1

Figure 16.10: Modular AC OP AMP model showing subcircuits

512

RDCMZ
R=650M

RCM1
R=1M

SRC2
G=1 S

SRC3
G=1 S

RSRT1
R=1

GMSRT1
G=0.01 S

RSCALE1
R=100

SRC1
G=1 S

RSUM1
R=1

GMP1
G=1 S

P_INN

P_INP

Voff1
U=voff1

Voff2
U=voff2

Ib1
I=ib

Ib2
I=ib

Ioff1
I=ioff1

ECM1
G=ecm1

VSR1
U=p1

CP1
C=cp1

RADO
R=aoldc

ECL
G=1

RP2
R=1

EOS1
G=1

RDCCL1
R=100M

CP2
C=cp2

P_VCC

P_VEE

DVLM2
Is=8e-16 A

DVL1
Is=8e-16 A

ROS1
R=ro

D3
Is=1e-15 A
Cj0=0.0

D2
Is=1e-15 A
Cj0=0.0

HCL1
G=hcl1

VLIM1
U=vlim1

VLIM2
U=vlim2

R1
R=r1

R2
R=r2

Cin1
C=cd

Equation

Eqn1
voff1=voff/2
voff2=voff/2
ioff1=ioff/2
r1=rd/2
r2=rd/2

Equation

Eqn2
ecm1=1e6/cmrrdc
ccm1=1/(2*pi*1e6*fcmz)

D1
Is=1e-12 A
Bv=psum
Ibv=20 mA

Equation

Eqn4
cp1=1/(2*pi*gbp)

Equation

Eqn6
hcl1=0.9/idcoutm

Equation

Eqn7
vlim1=vcc-vccm+1
vlim2=-vee+veem+1

RCM2
R=1

Equation

Eqn3
p1=(100*pslewr)/(2*pi*gbp)-0.7
p2=(100*nslewr)/(2*pi*gbp)-0.7
psum=p1+p2

Equation

Eqn5
cp2=1/(2*pi*fp2)

CCM1
C=ccm1

GMP2
G=1 S

P_OUT

Figure 16.11: Modular OP AMP subcircuit schematic with embedded component calcula-
tion equations

513

-

+

VCC

VEE

MOD

SUB2
voff=0.7e-3
ib=80e-9
ioff=10e-9
rd=2e6
cd=1.4e-12
cmrrdc=31622.77
fcmz=200.0
aoldc=199526.3
gbp=1e6
fp2=3e6
pslewr=0.5e6
nslewr=0.5e6
vcc=15
vee=-15
vccm=14
veem=-14
ro=75
idcoutm=34e-3

-

+

VCC

VEE

MOD

SUB1
voff=30e-6
ib=15e-9
ioff=12e-9
rd=4e6
cd=1.4e-12
cmrrdc=1778279.4
fcmz=2009.0
aoldc=1778279.4
gbp=8e6
fp2=17e6
pslewr=2.8e6
nslewr=2.8e6
vcc=15
vee=-15
vccm=14
veem=-14
ro=75
idcoutm=32e-3

R1
R=4.7k

R2
R=4.7k

R4
R=4.7k

R3
R=4.7k

V1
U=15 V

V2
U=15 V

V3
U=1 V

Equation

Eqn1
gain_ua741=dB(vout_ua741.v)
phase_ua741=phase(vout_ua741.v)
phase_op27=phase(vout_op27.v)
gain_op27=dB(vout_op27.v)

ac simulation

AC1
Type=log
Start=1 Hz
Stop=100MHz
Points=161

dc simulation

DC1

vout_ua741

vout_op27

number

1

vout_op27.V

-3.87e-05

vout_ua741.V

0.001

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8

0

0.5

1

Frequency Hz

vo
ut

_o
p2

7.
v

vo
ut

_u
a7

41
.v

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-60

-40

-20

0

Frequency Hz

ga
in

_o
p2

7
ga

in
_u

a7
41

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-100

0

100

200

Frequency Hz

ph
as

e_
op

27
ph

as
e_

ua
74

1

Figure 16.12: Unity gain OP AMP test circuit and waveforms

514

-

+

VCC

VEE

MOD

SUB2
voff=30e-6
ib=15e-9
ioff=12e-9
rd=4e6
cd=1.4e-12
cmrrdc=1778279.4
fcmz=2009.0
aoldc=1778279.4
gbp=8e6
fp2=17e6
pslewr=2.8e6
nslewr=2.8e6
vcc=15
vee=-15
vccm=14
veem=-14
ro=75
idcoutm=32e-3

-

+

VCC

VEE

MOD

SUB1
voff=0.7e-3
ib=80e-9
ioff=10e-9
rd=2e6
cd=1.4e-12
cmrrdc=31622.77
fcmz=200.0
aoldc=199526.3
gbp=1e6
fp2=3e6
pslewr=0.5e6
nslewr=0.5e6
vcc=15
vee=-15
vccm=14
veem=-14
ro=75
idcoutm=34e-3

V1
U=15 V

V3
U=15 V

V4
U=15 V

V2
U=15 V

R1
R=1k

R2
R=1k

C1
C=1 uF

C2
C=1 uF

R4
R=rp

R3
R=rp

Parameter
sweep

SW1
Sim=DC1
Type=log
Param=rp
Start=1e3
Stop=1e9
Points=31

dc simulation

DC1

vout_op27

vout_ua741

1e3 1e4 1e5 1e6 1e7 1e8 1e9

0

5

10

15

rp

vo
ut

_u
a7

41
.V

vo
ut

_o
p2

7.
V

Figure 16.13: Integrator test circuits for determining DC saturation

515

16.6 More complex nested subcircuit models

In the previous two sections the example circuits only included subcircuits nested to one
or two levels. Qucs does however, allow subcircuits to be nested to an arbitrary level
and parameters can be passed down the nested chain to any depth required. Some care
is needed when setting up the parameter passing sequence. Shown in Fig. 16.14 is a top
level subcircuit with temperature swept between 10 and 110 centigrade. A simple resistor
voltage divider network is at the bottom of a series of linked subcircuits, three levels down.
R2 in the divider is a function of temperature. A schematic representation of the coupled
subcircuits parameter passing sequence is also given in the right hand side of Fig. 16.14.
Each level passes the value of temperature to it’s next lower member in the hierarchy. The
Qucs generated netlist given in Fig. 16.15 clearly shows the parameter passing mechanism
employed by Qucs. The ability to nest subcircuits and pass parameters down a hierarchy
is an important feature in Qucs because it allows both circuit design and device data to
be passed to different sections of the circuit/system being simulated. These parameters
can, of course, be at different levels in a problem hierarchy providing a very flexible and
powerful design/analysis tool.

V1
U=1 V

dc simulation

DC1

Parameter
sweep

SW1
Sim=DC1
Type=lin
Param=tsweep
Start=10
Stop=110
Points=100

SUB 3
OUTIN

SUB1
sp1=tsweep

R1
R=10k
Temp=tscan
Tc1=0.01
Tc2=0.015

R2
R=10k
Temp=26.85

P2P1

vp01

20 40 60 80 100
0.4

0.6

0.8

1

tsweep

vp
01

.V

IN

IN OUT

OUT

SUB3

SUB2

SUB1

OUTIN

Sp1 = tsweep

Sp2=Sp1

tscan=Sp2

Figure 16.14: A nested subcircuit showing parameter passing sequence

516

Qucs 0 . 0 . 12 /media/hda2/Qucs equat ion mode l l ing p r j / rd iv t e s t tsweep 3 l . sch
. Def : rd iv sub1 temp net1 net0 tscan=”27 ”
R:R2 gnd net0 R=”10k ” Temp=”tscan ” Tc1=”0 . 01 ” Tc2=”0 . 015 ” Tnom=”26 . 85 ”
R:R1 net1 net0 R=”10k ” Temp=”26 . 85 ” Tc1=”0 . 0 ” Tc2=”0 . 0 ” Tnom=”26 . 85 ”
. Def :End

. Def : rd iv t e s t 6 temp net1 net0 sp2=”27 ”
Sub :SUB1 net1 net0 Type=”rd iv sub1 temp ” tscan=”sp2 ”
. Def :End

. Def : rd iv sub3 temp net0 net1 sp1=”27 ”
Sub :SUB1 net0 net1 Type=”rd iv t e s t 6 temp ” sp2=”sp1 ”
. Def :End

Vdc :V1 net0 gnd U=”1 V”
.DC:DC1 Temp=”26 . 85 ” r e l t o l=”0 . 001 ” a b s t o l=”1 pA” vnto l=”1 uV”
saveOPs=”no ” MaxIter=”150 ” saveAl l=”no ” convHelper=”none ” So lve r=”CroutLU ”
.SW:SW1 Sim=”DC1” Type=” l i n ” Param=”tsweep ” Start=”10 ” Stop=”110 ” Points=”100 ”
Sub :SUB1 net0 vp01 Type=”rd iv sub3 temp ” sp1=”tsweep ”

Figure 16.15: Qucs netlist for nested subcircuit showing parameter passing sequence

16.7 Introduction to equation defined devices (EDD)

Although adding symbolic equations to a simulator merges circuit design and analysis, it
is by making these equations functions of circuit variables that the real power of modern
circuit simulator is fully exploited. Equations that are functions of voltage, current and
charge have to be continuously evaluated as a simulation progresses. This is in contrast
to the type of equations previously introduced, which are only evaluated at the start
of a simulation sequence. When component properties are functions of circuit variables
considerable complexity is added to a simulation engine and as a result most simulators
restrict such properties to a small number of component types, the most common being
controlled current and voltage generators23. Qucs version 0.0.12 introduces an equation
defined device (EDD) which allows it’s terminal currents to be functions of voltage, and
it’s stored charge to be functions of voltage and current. The EDD is similar, but more
advanced, to the B type controlled source implemented in SPICE 3f5. It is capable of
realising the same models as the SPICE B type device plus an extensive range of more
complex compact device models. At this stage in Qucs development only the explicit

23Probably the most well known non-linear controlled generators are the SPICE 2g6 and 3f5 forms, see
A. Vladimirescu, Kaihe Zhang, A.R. Newton, D.O. Pederson and A. Sangiovanni-Vincentelli, SPICE
Version 2G User’s Guide, 1981, Department of Electrical Engineering and Computer Sciences, Univer-
sity of California, Berkeley, Ca. 94720, section 11, Appendix B: Nonlinear dependent sources., and B.
Johnson, T. Quarles, A.R. Newton, D.O. Pederson and A. Sangiovanni-Vincentelli, SPICE3 Version
f User’s Manual, 1992, Department of Electrical Engineering and Computer Sciences, University of
California, Berkeley, Ca. 94720, section 3.2.2.4, Non-linear dependent sources.

517

form of EDD is implemented24. EDD is an advanced component that allows Qucs users
to construct their own device models from a set of equations derived from the physical
properties that characterise a device. The explicit form of EDD can only be used to develop
models for devices where their defining equations can be transformed into the explicit
analysis form required by Qucs25. A range of functions similar to those defined in the
Verilog-A compact device modelling language are provided by Qucs, making the equation
modelling language easy to use and powerful. The ternary ? : form of the C language if
statement has also been implemented to allow selection of model equations that change
with differing device voltage, current and charge conditions. Before introducing the EDD
symbol and it’s properties consider the following circuit simulation modelling problem: a
model for a device is required where the output voltage is a function of two input voltages
V IN1 and V IN2, such that

Vout (V IN1, V IN2) = V IN1 ·V IN2, (16.11)

where V IN1 and V IN2 can be arbitrary varying voltages.

This type of model is difficult to simulate at functional level26 using the pre-version 0.0.12
built-in devices. A linear voltage controlled voltage source can be used to multiply a voltage
by a constant. Multiplying by a second voltage is not possible with the linear controlled
sources. Qucs AM modulated and PM modulated sources are the nearest that Qucs has
to the source defined above. These sources however, only allow sinusoidal carrier signals.
Illustrated in Fig. 16.16 is a four quadrant multiplier EDD which allows multiplication of
two varying signals27. The EDD device generates current I1 = V 2 ·V 3. This in turn is
transformed to the output voltage by a unity gain current controlled voltage source SRC1.
An EDD device can consist of up to 8 branches. The branches have currents, I1 to I8,
voltages V1 to V8 and internal charges Q1 to Q8 respectively. Overall the total device
current depends how these branches are connected. A similar comment applies to the
total device charge. In Fig. 16.16 currents I2 and I3 are set to zero, charges Q2 and Q3
are also zero, and voltages V 2 = V IN1 and V 3 = V IN2. Hence current I1 becomes the
multiplication of V IN1 and V IN2. The fact that currents I2 and I3 are set to zero implies
that the terminals connected to the external input voltages have high impedance and act
as voltage probes. The test circuit in Fig. 16.16 is shown with signal inputs generated
by sinusoidal oscillators; V1 acts as a modulating signal and V2 as a carrier signal. The
bottom right hand corner of Fig. 16.16 includes a second graph which illustrates the effect

24See Qucs Technical Papers, Section 10.7: Equation defined models, Stefan Jahn, Michael Margraf,
Vincent Habchi and Raimund Jacob, http://qucs.sourceforge.net/technical.html.

25The Y parameters of the device being modelled must also exist for the explicit form of the EDD to be
valid.

26It is, of course, possible to model the multiplier operation at discrete component level e.g. using a
Gilbert cell mixer circuit.

27This model is based on an idea suggested by Stefan Jahn, during the EDD development phase.

518

http://qucs.sourceforge.net/technical.html

of changing signal V2 to a square wave source with 0.05ms period.

V1
U=1 V
f=1 kHz

V2
U=5 V
f=10 kHz VMULT1

SRC1
G=1

Out1
Num=1

In1
Num=2

In2
Num=3

1

2

3

D1
I1=V2*V3
Q1=0
I2=0
Q2=0
I3=0
Q3=0

transient
simulation

TR1
Type=lin
Start=0
Stop=1 ms
Points=401

R1
R=50 Ohm

Out

0 2e-4 4e-4 6e-4 8e-4 1e-3

-5

0

5

time

O
ut

.V
t

0 2e-4 4e-4 6e-4 8e-4 1e-3

-1

0

1

time

vm
ul

_2
_t

b:
O

ut
.V

t

Figure 16.16: Qucs EDD four quadrent multiplier model and test circuit

16.8 The Qucs EDD component

A two terminal model for a universal non-linear component with resistive, capacitive and
inductive parallel branches is shown in Fig. 16.17. All three branches have elements that
can be functions of either voltage or current or charge28. The Qucs EDD component can be
used to model this nonlinear device. One EDD element is needed to model the resistive and
capacitive branches. A second EDD device, plus a gyrator, models the inductive branch.

28Each branch can be a function of one or more of these circuit variables but not necessarily all three at
the same time.

519

The total terminal current is the sum of the individual branch currents. Equations for the
three branch currents are given by the following equations:

I = I1 + IC + IL, (16.12)

where

I1 = f(V), IC = C(V, I) · dV 1

dt
=
dQ1

dt
(16.13)

Also

V 1 = i2, V 2 = −IL, i2 = −L(I) · dV 2

dt
, V 1 = L(I) · dIL

dt
(16.14)

Giving

IL =
1

L(I)
·
∫
V 2 · dt (16.15)

and

V L = V 2 = V 1 =
dΦ

dt
(16.16)

Hence

I = f(V) + C(V, I) · dV 1

dt
+

1

L(I)
·
∫
V 1 · dt (16.17)

The EDD is characterised by eight parallel branches each comprising a current component
In and a charge component Qn, where n ranges from 1 to 8. The currents may be constants
or defined by equations that are functions of the EDD branch voltages (these are designated
V 1 to V 8). This form of the EDD component is known as the explicit EDD model.
Please note, EDD currents cannot be functions of current. However, with release 0.0.12
implementation of the explicit EDD the device charge can be a function of either voltage
or current29. The current in the resistive branch being a function of EDD voltage allows a
range of two terminal30 devices to be modelled, allowing, for example, nonlinear resistors
and diode models to be easily developed. Similarly, the fact that the EDD charge can be
a function of voltage or current extends the range of allowed Qucs capacitor types opening
new areas of application. The same comments apply to the nonlinear inductors where
components that have inductance values which are functions of current allow modelling
of nonlinear transformer and coupled inductor effects. This was not possible with earlier
Qucs releases. The EDD current and charge values may be defined by symbolic equations
that include the operators and functions listed in the “Short description of mathematical
functions“ entry in the Qucs help index31.

29This allows modelling of semiconductor capacitive effects where the amount of stored charge is either a
function of voltage (depletion layer capacitance), or a function of current (diffusion capacitance).

30The number of device terminals can be increased to model transistors and other devices.
31The Qucs operators and functions are a superset of those defined in the Verilog-A language manual.

However, in some cases the name of the operator or function differs slightly. For example Verilog-A
uses pow(x, y) for the power function whilst Qucs uses ∧ to denote xy. An example of differing function
names are the inverse trigonometric functions. A list of the available functions is given in Appendix A.

520

X1
R=1

1

D1
I1=I1
Q1=C(V,I)*V1 1

D2
I1=0
Q1=L(I)*V2

C1
C=f(V,I)

L1
L=f(I)

R1
R=f(V)

I1+IC IL

V2

I

V1

i2

I

V1

I1 IC IL

Q

Gyrator

Equation
defined
device
(EDD)

Equation
defined
device
(EDD)

Figure 16.17: A non-linear two terminal branch with parallel resistive, capacitive and in-
ductive components

521

16.9 Modelling nonlinear resistors

In many measurement applications a transducer is employed to transform changing values
of a physical quantity to, say, changes in resistance. Often the resistive characterstics
of these devices are nonlinear. To demonstrate how the EDD can be used to model a
nonlinear resistance the example shown in Fig. 16.18 is introduced. In this schematic an
EDD represents a resistance that is a function of the applied voltage across it’s terminals.
This example deliberately shows an extreme case where the resistance changes in a resistive
pulse like fashion as the terminal voltage increases. The example also introduces for the
first time the ternary ? : operator and illustrates how it can be nested to give an ”if
then else“ structure to define the component properties. A point of note with these very
nonlinear devices centres around the fact that it is possible to define components that have
discontinuities in their I-V characteristics32. The EDD current equation defines how the
resistance of this device changes with changing terminal voltage. This equation is given by

I1=V1/((V1<1.0) ? 1000 : (V1<2.0)

? 1000+4000*(V1-1) : (V1<5.0)

? 5000 : ((V1 >=5.0) && (V1<6.0))

? 5000-4500*(V1-5.0) : 500)

Which in terms of an ”if then else“ type statement is equivalent to:

I1 = V1/(if (V1 < 1.0) then 1000

else if (V1 < 2.0) then 1000 + 4000*(V1-1)

else if (V1 < 5.0) then 5000

else if ((V1 >= 5.0) && (V1 < 6.0)) then 5000 - 4500*(V1-5.0)

else 500)

32One effect of such a discontinuity is the introduction of rapidly changing circuit conditions which can
cause the simulator difficulties in converging to a correct solution. Sometimes, if this happens, simula-
tion run times may be dramatically increased or simulation fails altogether.

522

V
1

U
=V

s

dc
 s

im
ul

at
io

n

D
C

1

P
r1

E
qu

at
io

n

E
qn

1
R

=V
s/

P
r1

.I

P
ar

am
et

er
sw

ee
p

S
W

1
S

im
=D

C
1

T
yp

e=
lin

P
ar

am
=V

s
S

ta
rt=

0
S

to
p=

7
P

oi
nt

s=
10

0

1

D
1

I1
=V

1/
((

V
1<

1.
0)

 ?
 1

00
0

: (
V

1<
2.

0)
 ?

 1
00

0+
40

00
*(

V
1-

1)
 :

(V
1<

5.
0)

 ?
 5

00
0

: (
(V

1
>=

5.
0)

 &
&

 (
V

1<
6.

0)
) ?

 5
00

0-
45

00
*(

V
1-

5.
0)

 :
50

0)

V
s

0
1

2
3

4
5

6
7

1e
-6

1e
-5

1e
-4

1e
-3

0.
010.

1

V
s

Pr1.I

0
1

2
3

4
5

6
7

0

1e
3

2e
3

3e
3

4e
3

5e
3

V
s

R

Figure 16.18: Qucs nonlinear resistor model

523

16.10 Modelling nonlinear capacitors and inductors

Nonlinear capacitors, who’s C value is a function of terminal voltage, and nonlinear induc-
tors, who’s L value is a function of terminal current, commonly act as control elements in
electronic systems. SPICE 2g6 includes a nonlinear symbolic polynomial form of C and L33.
The schematic shown in Fig. 16.19 illustrates how a nonlinear capacitor can be modelled by
an EDD. This model is based on a SPICE like polynomial function with four coefficients;
C0, C1, C2 and C334. The test circuit is a simple RC network with nominally identical R
and C component values to those shown in Fig. 16.2. Increasing the value of DC source
V1 also increases C which in turn decreases the RC low pass filter -3dB frequency. This
effect is very visible in Fig. 16.19. The nonlinear changes in C are also clearly illustrated
in the output voltage and phase curves. The schematic symbol for the nonlinear capacitor
is shown in Fig. 16.19 with a red ring drawn around the normal capacitor symbol. This
denotes an EDD based component. An alternative convention is to use red lettering within
a symbol. The test circuit and simulation results for a nonlinear inductance are shown in
Fig. 16.20. The EDD model is similar to the SPICE 2g6 nonlinear inductance model with
four coefficients. This number can be increased, if required, by extending the EDD polyno-
mial expression. A gyrator is employed with the EDD to model the nonlinear inductance.
The effect of nonlinear inductance on the inductance current is shown by the difference
between probe currents Pr1 and Pr2.

33The details of these polynomial functions are presented in Test Reports 4 and 5 of the SPICE to Qucs
testing Series, Mike Brinson, http://qucs.sourceforge.net/docs.html.

34SPICE 2g6 allows up to twenty coefficients. Simply add more higher order terms to the Qucs polynomial
if required.

524

http://qucs.sourceforge.net/docs.html

V2
U=1 V

V1
U=Vb R1

R=1k

dc simulation

DC1

ac simulation

AC1
Type=log
Start=1 Hz
Stop=10kHz
Points=201

Equation

Eqn1
Ph_Vout=phase(Vout.v)
Vout_dB=dB(Vout.v)

Parameter
sweep

SW1
Sim=AC1
Type=lin
Param=Vb
Start=1
Stop=10
Points=10

V

SUB1
C0=1u
C1=0.5u
C2=0.2u
C3=0.1u

PIN1

POUT1
1

D1
I1=0
Q1=C0*V1+(C1/2)*V1^2+(C2/3)*V1^3+(C3/4)*V1^4

Vout

1 10 100 1e3 1e4

0

0.5

1

acfrequency

V
ou

t.v

1 10 100 1e3 1e4

-80

-60

-40

-20

0

acfrequency

V
ou

t_
dB

1 10 100 1e3 1e4

100

150

200

acfrequency

P
h_

V
ou

t

Vb
1
2
3
4
5
6
7
8
9
10

Vout.V
1
2
3
4
5
6
7
8
9
10

Figure 16.19: Qucs nonlinear capacitor model

525

V1
U=vin
f=1 MHz

Pr1

Pr2 L1
L=1e-6

transient
simulation

TR1
Type=lin
Start=0
Stop=4 us

Parameter
sweep

SW1
Sim=TR1
Type=lin
Param=vin
Start=0
Stop=100
Points=3

dc simulation

DC1

X1
R=1

P_inp1

P_inn1

1

D1
I1=0
Q1=L*V1+(L2/2)*V1^2+(L3/3)*V1^3+(L4/4)*V1^4

IND=L+L2*I(L)+L3*I(L)^2+L4*I(L)^3

SUB1
L=1e-6
L2=5e-7
L3=1e-7
L4=5e-8

in

0 5e-7 1e-6 1.5e-6 2e-6 2.5e-6 3e-6 3.5e-6 4e-6

-100

0

100

time

in
.V

t

0 5e-7 1e-6 1.5e-6 2e-6 2.5e-6 3e-6 3.5e-6 4e-6

0

2

4

6

time

P
r1

.It

0 5e-7 1e-6 1.5e-6 2e-6 2.5e-6 3e-6 3.5e-6 4e-6

0

20

40

time

P
r2

.It

Figure 16.20: Qucs nonlinear inductor model

526

16.11 Compact device modelling using EDD

Semiconductor device models are a corner stone of all circuit simulators. Often they are
characterised by the same parameters as those found in the SPICE 2g6 and 3f5 diode, BJT,
FET and MOS models.35. Since the original SPICE semiconductor device models where
first developed many new extensions to these models have been proposed. Unfortunately,
adding such models to a circuit simulator is a complex process, being both time consuming
and requiring specialised knowledge. For the average Qucs user the hand coded C++ model
generation route is one that they would not contemplate attempting because of the depth
of knowledge and specialised skills required. The Qucs EDD was devised to promote fast,
and straight forward, prototyping of semiconductor compact models, allowing a wider Qucs
population the opportunity to try their hand at device model construction. To demonstrate
the stages needed to generate an EDD model of a semiconductor device a compact model
of a diode is introduced in this section36.

The DC diode current Id is given by the following functions of diode voltage Vd
37.

Id = Is · (exp (Vd/(n ·V t)− 1) + Vd ·GMIN, ∀ (−5 ·n ·V t ≤ Vd) (16.18)

Id = −Is + Vd ·GMIN, ∀ (−BV < Vd) and (Vd < −5 ·n ·V t ≤ Vd) (16.19)

Id = −IBV, ∀ (Vd = −BV) (16.20)

Id = −Is · (exp (−(BV + Vd)/V t)− 1 +BV/V t) , ∀ (Vd < −BV). (16.21)

In these equations:

• Is = the saturation current.

• n = the emission coefficient.

35The SPICE 2g6 and 3f5 device parameters are a subset of those commonly provided with current
generation of circuit simulators, including Qucs.

36A second three terminal MESFET transistor example is available for downloading from the Qucs Web
site.

37These equations are for the SPICE 2g6 diode model, see Giuseppe Massobrio, Chapter 1, Pn-junction
diode and Schottky diode, Semiconductor device modeling with SPICE, Edited by Paolo Antognetti,
Giuseppe Massobrio, 1988, McGraw-Hill,Inc, ISBN 0-07-002107-4.

527

• GMIN = a small conductance in parallel with the diode38

• V t = kB ·T/q, where T is the diode temperature in Kelvin, kB is Boltzmann’s
constant and q the charge on the electron.

• BV = reverse breakdown voltage (positive number)

• IBV = reverse breakdown current (positive number).

Figure 16.21 gives the EDD model for the experimental semiconductor diode. The ternary
operator ?: is used to select the correct equation for each diode operating region. The
diode current Id : content.tex, v1.22007/06/0316 : 58 : 59elaExp is the sum of EDD
branch currents I1 to I4, where I1 represents the diode forward bias region, I2 the reverse
bias region and I3 plus I4 the diode reverse bias breakdown region. When calculating
diode current a special form of the exponential function exp(), called limexp(), is employed
to assist Qucs to converge to a solution during DC and transient large signal analysis. The
function limexp() linearises the exponential function at large argument values minimising
the possibility of floating point overflow and generation of software exceptions. The Id −
Vd characteristic curves shown in Fig. 16.21 are for the forward bias region with series
resistance rs set to 0.01Ω. For completeness the simulation data for the Qucs built-in
diode are also given. Clearly the two sets of results are very similar. The DC simulation
results for the diode reverse breakdown region of operation are shown in Fig. 16.22. Again
for comparison an Id − Vd plot for the Qucs built-in diode is also provided. In this region
of operation some slight differences are apparent: although for both devices the reverse
breakdown is very close to 100V the slope of the Id−V d curve at negative voltages beyond
-BV is different, emphasising that the SPICE diode model does not model breakdown or
zener effects well39.

The next stage in the development of the diode model is to add capacitance effects: deple-
tion layer capacitance for the reverse bias region and diffusion capacitance for the forward
bias region. Diode capacitance is given by:

• Depletion layer capacitance

Cdep =
dQdep

dVd
= Area ·Cj0

(
1− Vd

Vj

)−m
(16.22)

• Diffusion capacitance

Cdiff =
dQdiff

dVd
= tt · dId

dVd
(16.23)

38GMIN is added to help Qucs DC convergence. The SPICE default value is 1e-12S.
39See Steven M. Sandler, SPICE subcircuit accurately models zener characteristics, Personal Engineering,

November 1998, pp 45-48 for more information on this subject.

528

dc simulation

DC1

Pr1
Vs
U=Vd

Equation

Eqn1
Id=Pr1.I
Id_Q=Pr2.I
lnId=ln(Pr1.I)
lnId_Q=ln(Pr2.I)

SUB1
n=1.0
rs=0.01
Is=1e-14
BV=100.0
IBV=1e-3
Vj=1.0

Parameter
sweep

SW1
Sim=DC1
Type=lin
Param=Vd
Start=0
Stop=1
Points=190

Pr2

D1
Is=1e-14 A
N=1
Vj=1.0
Rs=0.01
Bv=100.00
Ibv=1e-3

PCATHODE1

1234

D2
I1=(V1>-5.0*n*Vt) ? Is*(limexp(V1/(n*Vt))-1.0)+V1*GMIN : 0
Q1=0
I2=(-BV<V1) ? (V1<-5.0*n*Vt) ? -Is+V1*GMIN : 0 : 0
Q2=0
I3=(V1==-BV) ? -IBV : 0
Q3=0
I4=(V1<-BV) ? -Is*(limexp(-(BV+V1)/Vt)-1.0+BV/Vt) : 0
Q4=0

Equation

Eqn2
GMIN=1e-12
Vt=vt(300)

RS1
R=rs

PANODE1

0 0.2 0.4 0.6 0.8 1
-40

-20

0

Vd (V)

ln
(Id

)

0 0.2 0.4 0.6 0.8 1

0

5

10

Vd (V)

Id
 (A

)

0 0.2 0.4 0.6 0.8 1

0

5

10

Vd (V)

ID
_Q

 (A
)

0 0.2 0.4 0.6 0.8 1
-40

-20

0

Vd (V)

ln
(ID

_Q
)

Figure 16.21: Compact diode model DC test circuit and simulation results: SUB1 is the
EDD diode model and D1 the Qucs diode model with the same parameters
as SUB1.

529

-101 -100.5 -100 -99.5

-10

-5

0

Vd (V)

Id
 (A

)

-101 -100.5 -100 -99.5

-50

0

Vd (V)

ID
_Q

 (A
)

Figure 16.22: Compact diode model DC simulation results for the reverse breakdown region
of operation

Where the total stored charge Qd = Qdep +Qdiff . Using the same notation as the SPICE
diode model:

Qdiff = tt · Id (16.24)

Qdep = Area ·Cj0
Vd∫
0

(
1− Vd

Vj

)−m
dV, ∀ (Vd <= FC ·Vj) (16.25)

Using integration formula
∫

(ax+ b)ndx =
1

a

(ax+ b)1+n

1 + n
and simplifying yields:

Qdep =
Area ·Cj0 ·Vj

1−m

[
1−

(
1− Vd

Vj

)1−m
]

(16.26)

Also, in the forward bias region

Qdep = Area ·Cj0 ·F1 +
Area ·Cj0

F2

Vd∫
FC ·Vj

(
F3 +

m ·Vd
Vj

)
dV, ∀ (Vd >= FC ·Vj)

(16.27)

On integrating

Qdep = Area ·Cj0
[
F1 +

(
1

F2

)
·
{
F3 · (Vd − FC ·Vj) +

(
m

2 ·Vj

)
·
(
V 2
d + (FC ·Vj)2

)}]
(16.28)

Where

530

F1 =
Vj

1−m
[
1− (1− FC)1−m} , F2 = (1− FC)1+m , F3 = 1− FC · (1 +m) (16.29)

In these equations:

• FC = Coefficient for forward-bias depletion capacitance.

• m = Grading coefficient.

• tt = Transit time.

• Area = Device area.

• Cj0 = Zero-bias junction capacitance.

Figure 16.23 shows the extended diode model. The Cdep and Cdiff components of the
device capacitance have been included in the EDD model as stored charge Q1 and Q2.
Again the ternary operator ?: is employed to select the correct equation for each section of
the diode DC operating range. An equation block is used to simplify the charge equations
through the use of factors F1, F2 and F3.40. An area factor has also been added to the
EDD model in Fig. 16.23. This is introduced to allow simulation of two or more equivalent
parallel devices. The diode variables scaled by area are:

Is(A) = Is ·Area, Cj0(A) = Cj0 ·Area, and rs(A) = rs/Area. (16.30)

The test circuit shown in Fig. 16.23 illustrates how device capacitance and resistance can
be determined as a function of diode bias voltage. Firstly, the diode S parameters are
determined at a given bias voltage, secondly these are converted to Y parameters and
the diode capacitance (Cap) and resistance (RD) extracted from Y [1, 1], and finally the
variation of Cap and RD with diode voltage Vd plotted using the Qucs plotting function
PlotVs. Notice that the value of Cap at Vd = 0V agrees with the value of Cj0.

To complete the demonstration EDD diode model all that remains to do is to add temper-
ature dependence to the current and capacitance equations. Circuit simulators normally
use two temperatures to determine device temperature dependence; the first called Tnom
represents the temperature that the device parameters were measured, and the second
called Temp represents the current device temperature. A high percentage of the diode
parameters are temperature dependent. However, to simplify the demonstration diode
model only the temperature dependence of parameters Is, V j and Cj0 will be included

40In complex current and charge expressions precalculating subexpressions in equation blocks ensures that
they are only calculated once at the beginning of a simulation, ensuring minimum run times for an
EDD model.

531

Pr1

P1
Num=1
Z=50 Ohm

X1

Vs1
U=Vs

dc simulation

DC1

S parameter
simulation

SP1
Type=const
Values=[100 kHz]

Parameter
sweep

SW1
Sim=SP1
Type=lin
Param=Vs
Start=-4
Stop=0.8
Points=200

Equation

Eqn1
Y=stoy(S)
LN_RD=ln(RD)
RD=PlotVs(1/(real(Y[1,1])),Vs)
Cap=PlotVs(imag(Y[1,1])/Omega,Vs)
Omega=2*pi*frequency

SUB1
n=1.0
rs=0.01
Is=1e-14
BV=100.0
IBV=1e-3
Vj=1.0
Cj0=1e-12
FC=0.5
tt=1e-12
Area=1
m=0.5

RS1
R=rs

PANODE1

PCATHODE1Equation

Eqn2
GMIN=1e-12
F1=(Vj/(1-m))*(1-(1-FC)^(1-m))
F2=(1-FC)^(1+m)
F3=1-FC*(1+m)
Vt=vt(300)

1234

D1
I1=(V1>-5.0*n*Vt) ? Is*(limexp(V1/(n*Vt))-1.0)+V1*GMIN : 0
Q1=(V1 < FC*Vj) ? tt*I1+Area*(Cj0*Vj/(1-m))*(1-(1-V1/Vj)^(1-m)) : 0
I2=(-BV<V1) ? (V1<-5.0*n*Vt) ? -Is+V1*GMIN : 0 : 0
Q2=(V1 >= FC*Vj) ? tt*I1+Area*Cj0*(F1+(1/F2)*(F3*(V1-FC*Vj)+(m/(2*Vj))*(V1*V1-FC*FC*Vj*Vj))) : 0
I3=(V1==-BV) ? -IBV : 0
Q3=0
I4=(V1<-BV) ? -Is*(limexp(-(BV+V1)/Vt)-1.0+BV/Vt) : 0
Q4=0

Vd

-4 -3 -2 -1 0 1

0

5e-12

1e-11

Vd (V)

C
ap

 (F
)

-4 -3 -2 -1 0 1

0

5e11

1e12

Vd (V)

R
d

(

�)

-4 -3 -2 -1 0 1

0

20

VD (V)

LN
_R

D

Figure 16.23: Compact diode model capacitance and resistance simulation

532

in the model. Adding extra temperature dependence to the diode model is left to readers
as an exercise41. One of the great advantages of the EDD style of modelling is that it is
interactive allowing easy experimentation with models to any given level. The following
equations list the temperature dependence of Is, V j and Cj0.

Let T1 = Tnom and T2 = Temp, then

Is(T2) = Is(T1)

{
T2

T1

}XTI
n

exp

[
−q ·Eg(300)

kB ·T2

(
1− T2

T1

)]
(16.31)

V j(T2) =
T2

T1
·V j(T1)− 2 · kB ·T2

q
ln

(
T2

T1

)1.5

−
[
T2

T1
·Eg(T1)− Eg(T2)

]
(16.32)

Cj0(T2) = Cj0(T1)

[
1 +m

{
400 · 10−6 (T2− T1)− V j(T2)− V j(T1)

V j(T1)

}]
(16.33)

In these equations:

• XTI = Saturation current temperature exponent.

• Eg(T) = EG(0)− 7.02e− 4 ·T 2

1108 + T
, the energy gap.

Figure 16.24 shows the extended EDD for the experimental diode model. Again the lim-
exp() function is used in preference to the standard exp() function in the temperature
calculations listed in equations block Eqn2. The test circuit in Fig. 16.24 sweeps the device
temperature from 20 to 80 degrees Centigrade. The graph inlay illustrates the experimen-
tal diode current Id plotted as a function of temperature. The temperature of the built-in
Qucs diode is held constant, at room temperature, and it’s current Id Q plotted as an
overlay. The two curves cross at room temperature, indicating identical currents at this
temperature.

41For example, parameters m and BV are both temperature dependent.

533

Pr1

Pr2

Equation

Eqn1
Id=Pr1.I
Id_Q=Pr2.I
lnId=ln(Pr1.I)
lnId_Q=ln(Pr2.I)

Vs
U=0.6

D1
Is=1e-14 A
N=1
Cj0=1e-12
Vj=1.0
Rs=0.01
Bv=100.00
Ibv=1e-3
Temp=26.85
Xti=3.0
Eg=1.11
Tnom=26.85
Area=1

dc simulation

DC1

Parameter
sweep

SW2
Sim=DC1
Type=lin
Param=Temp_sw
Start=-20
Stop=80
Points=100

SUB1
n=1.0
rs=0.01
Is=1e-14
BV=100.0
IBV=1e-3
Vj=1.0
Cj0=1e-12
m=0.5
Area=1
FC=0.5
tt=1e-12
XTI=3.0
Tnom=26.85
Temp=Temp_sw
Eg=1.16

Equation

Eqn2
Cj0_T2=Cj0*(1+m*(400e-6*(T2-T1)-(Vj_T2-Vj)/Vj))
rs_AREA=rs/AREA
GMIN=1e-12
A=7.02e-4
B=1108
T1=Tnom+273.15
Vj_T2=(T2/T1)*Vj-(2*kB*T2/q)*ln((T2/T1)^1.5)-((T2/T1)*Eg_T1-Eg_T2)
Is_T2=Is*(T2/T1)^(XTI/n)*limexp((-(q*Eg)/(kB*T2))*(1-T2/T1))
Eg_T1=Eg-A*T1*T1/(B+T1)
Eg_T2=Eg-A*T2*T2/(B+T2)
T2=Temp+273.15

Equation

Eqn3
F1=(Vj/(1-m))*(1-(1-FC)^(1-m))
F2=(1-FC)^(1+m)
F3=1-FC*(1+m)
Vt=vt(300)

PCATHODE1

PANODE1

RS1
R=rs_AREA

1234

D2
I1=(V1>-5.0*n*Vt) ? Area*Is_T2*(limexp(V1/(n*Vt))-1.0)+V1*GMIN : 0
Q1=(V1 < FC*Vj) ? tt*I1+Area*(Cj0_T2*Vj_T2/(1-m))*(1-(1-V1/Vj_T2)^(1-m)) : 0
I2=(-BV<V1) ? (V1<-5.0*n*Vt) ? -Area*Is_T2+V1*GMIN : 0 : 0
Q2=(V1 >= FC*Vj) ? tt*I1+Area*Cj0_T2*(F1+(1/F2)*(F3*(V1-FC*Vj_T2)+(m/(2*Vj_T2))*(V1*V1-FC*FC*Vj_T2*Vj_T2))) : 0
I3=(V1==-BV) ? -IBV : 0
Q3=0
I4=(V1<-BV) ? -Area*Is_T2*(limexp(-(BV+V1)/Vt)-1.0+BV/Vt) : 0
Q4=0

-20 0 20 40 60 80
1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

0.01

0.1

Temp (Centigrade)

Id
Id

_Q

Figure 16.24: Compact diode model with temperature dependence

534

16.12 Constructing EDD compact device models and
circuit macromodels

Component equations, subcircuits with parameters and EDD models are major develop-
ments for the Qucs circuit simulator. They provide advanced modelling capabilities with
enough power and flexibility to allow a much greater range of models to be developed than
the ones currently provided with each Qucs release. In the future it is proposed to add new
models to the Qucs Web site. The Qucs team is very keen to encourage all Qucs users to
support the modelling effort. If you have constructed a new model and would like to share
it with other Qucs users please post your model on the qucs-devel or qucs-help mailing
lists. Both the model schematic file and a brief outline of its operation and specification
are requested. An example model specification for the Curtice MESFET device can be
found on the Qucs Web site. Please use the same format when writing model descriptions.

16.13 End Note

This tutorial note introduces a large number of new modelling concepts and shows how
equations, subcircuits with parameters and the new equation defined device perform a
central role in constructing Qucs models. The EDD approach to modelling makes pos-
sible, for the first time, the construction of equation defined compact device models and
circuit macromodels using the Qucs schematic capture facilities as an interactive modelling
medium. This is a major step forward for Qucs. Once again these notes are very much
a record of work in progress: much still remains to be done in the future to improve the
modelling capabilities provided by Qucs. A major short term task will be the development
of additional models covering as wide a range of applications as possible. If Qucs is to
fulfill it’s mission to become a truly universal circuit simulator then it must be supported
by models. Some readers will have noticed that these notes include very little information
about the ADMS-Verlog-A and hand coded C++ model development routes. This was a
deliberate decision on my part. Sometime in the future I intend to return to these subjects
and update the tutorial. A very special thank you must go to Stefan Jahn for all his hard
work, skill, and dedication during the period he has worked on programming the amazing
modelling capabilities now embedded in Qucs.

535

16.14 Appendix A: Qucs constants, operators and
functions

This appendix lists the constants, operators and a number of functions that are avail-
able for constructing Qucs equations. Items in [...] indicate the equivalent object in
the Verilog-A language. The functions listed are common to Qucs and Verilog-A. A
number of other functions have been implemented in Qucs. The full list can be found
in the Qucs help system; ”Short Description of mathematical Functions” or in the Qucs
”Measurement Expression Reference Manual“ by Gunther Kraut and Stefan Jahn, http:
//qucs.sourceforge.net/docs.html.

• Constants

1. pi = 3.141593...

2. e = 2.718282...

3. kB = 1.380651e-23 J/K

4. -q = -1.602177e-19 C

• Operators

1. +x unary plus

2. -x unary minus

3. x+y addition

4. x-y subtraction

5. x*y multiplication

6. x/y division

7. x%y modulo (remainder)

8. x^y power [pow(x,y)]

9. ?: ternary (condition) ? (expression if true) : (expression if false)

10. || logical or

11. && logical and

12. == equal

13. < less than

14. <= less than or equal to

15. > greater than

16. >= greater than or equal to

17. != not equal to

18. () brackets

536

http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html

• Functions

1. ln(x) natural logarithm

2. log10(x) decimal logarithm [log(x)]

3. exp(x) exponential function base e

4. sqrt(x) square root

5. min(x,y) minimum

6. max(x,y) maximum

7. abs(x) absolute value

8. sin(x) sine

9. cos(x) cosine

10. tan(x) tangent

11. arcsin(x) inverse sine [asin(x)]

12. arccos(x) inverse cosine [acos(x)]

13. arctan(x[,y]) inverse tangent [atan2(x,y)]

14. sinh(x) hyperbolic sine

15. cosh(x) hyperbolic cosine

16. tanh(x) hyperbolic tangent

17. arsinh(x) inverse hyperbolic sine [asinh(x)]

18. arcosh(x) inverse hyperbolic cosine [acosh(x)]

19. artanh(x0 inverse hyperbolic tangent [atanh(x)]

20. limexp(x) argument limited exponential function

21. hypot(x,y) Euclidean distance function

537

16.15 Appendix B: Constructing subcircuits with
parameters

In this appendix a series of screen dumps illustrate the sequence needed to construct a
subcircuit with parameters. A simple series resonance circuit has been chosen for the
demonstration.

16.15.1 Enter the series resonance circuit and add input and output
pins

Figure 16.25: Stage 1: screen dump showing LCR circuit

538

16.15.2 Change the component names to Ls, Cs and Rs

Figure 16.26: Stage 2: screen dump showing LRC circuit

Figure 16.27: Stage 2: screen dump after name changes

539

16.15.3 Construct symbol for new subcircuit

Right click on the Qucs drawing area and select Edit Circuit symbol or press key F9. Edit
the drawing symbol to give the design shown in Fig. 16.28.

Figure 16.28: Stage 3: the subcircuit symbol

540

16.15.4 Add the names of the subcircuit parameters to the LCR
symbol

Right click on the SUB / File=name caption and enter names of subcircuit parameters
with their default values.

Figure 16.29: Stage 4: entering subcircuit parameter names and default values

Figure 16.30: Stage 4: resulting subcircuit and parameter list with default values

541

16.15.5 Test the LCR subcircuit

Figure 16.31 gives a simple AC transfer function test circuit and resulting waveforms.
Parameter R SW is swept over the range 1Ω to 10Ω and the AC transfer function recorded
and plotted.

V1
U=1 V

dc simulation

DC1

I O
LCR

SUB1
Rs=R_SW
Cs=1u
Ls=1m

Parameter
sweep

SW1
Sim=AC1
Type=lin
Param=R_SW
Start=1
Stop=10
Points=10

ac simulation

AC1
Type=log
Start=100 Hz
Stop=100kHz
Points=100Equation

Eqn1
gain=dB(Vout.v)
phase=phase(Vout.v)

Vin Vout

100 1e3 1e4 1e5

-100

0

100

acfrequency

ph
as

e

100 1e3 1e4 1e5

0

0.5

1

acfrequency

V
ou

t.v

100 1e3 1e4 1e5

-50

0

acfrequency

ga
in

Figure 16.31: Stage 5: Subcircuit test circuit and output waveforms

542

	1 General Design Flow
	2 Getting started with Qucs
	2.1 Introduction
	2.2 Tool suite
	2.3 Setting up schematics
	2.3.1 DC simulation - A voltage divider
	2.3.2 DC simulation - Characteristics of a transistor
	2.3.3 AC simulation - Transit frequency of a bipolar transistor
	2.3.4 AC simulation - A simple RC highpass
	2.3.5 Transient simulation - Amplification of a bipolar transistor
	2.3.6 S-parameter simulation - Transit frequency of a BJT
	2.3.7 S-parameter and AC simulation - A Bessel band-pass filter

	3 Understanding RF Data Sheet Parameters
	3.1 Introduction
	3.2 DC specifications
	3.3 Maximum ratings and thermal characteristics

	4 DC Analysis, Parameter Sweep and Device Models
	4.1 DC Static Circuits
	4.2 When Things Vary
	4.3 Models and Parameters

	5 Getting Started with Digital Circuit Simulation
	5.1 Introduction
	5.2 Simulating simple digital circuits
	5.2.1 Notes on drawing digital schematics

	5.3 VHDL code generated by Qucs
	5.4 Truth tables
	5.5 Digital subcircuits
	5.6 Building a digital component library
	5.6.1 Logic zero
	5.6.2 Logic one
	5.6.3 G2bit - 2 bit pattern generator
	5.6.4 G4bit - 4 bit pattern generator
	5.6.5 MUX2to1 - 2 input to 1 output multiplexer
	5.6.6 MUX4to1 - 4 input to 1 multiplexer
	5.6.7 2 bit adder

	5.7 Subcircuit VHDL code generated by Qucs
	5.7.1 Gen2bit
	5.7.2 2 bit adder
	5.7.3 Notes on subcircuit VHDL generation

	5.8 Subcircuit nesting: A more complex design example
	5.8.1 4 bit RTL design

	5.9 Update number one: May 2006
	5.9.1 Bugs, corrections and small changes to the Qucs digital simulation code
	5.9.2 New digital simulation features
	5.9.3 Limitations
	5.9.4 Using the Qucs VHDL editor
	5.9.5 Linking VHDL entity-architecture models to Qucs schematic device symbols
	5.9.6 Generating VHDL code from Qucs schematic drawings

	5.10 Update number two: September 2006
	5.10.1 Simulating VHDL code using Qucs and FreeHDL.
	5.10.2 VHDL predefined packages and libraries.
	5.10.3 VHDL simulation code structures.
	5.10.4 VHDL data types.
	5.10.5 An example VHDL simulation employing integer signals.
	5.10.6 Multivalued logic.
	5.10.7 Run debugging of VHDL simulation code.
	5.10.8 Testing digital systems using test vectors stored on disk.

	5.11 End note

	6 Transient Domain Flip-Flop Models for Mixed-Mode Simulation
	6.1 Introduction
	6.2 Latches and flip-flops
	6.3 The gated D latch
	6.4 Edge-triggered D type flip-flop
	6.5 The edge-triggered JK flip-flop
	6.6 The edge-triggered T flip-flop
	6.7 Two example digital circuits
	6.8 VHDL code for the transient domain flip-flop models
	6.9 Generating a library of mixed-mode digital components
	6.10 Digital component propagation time delays and transient simulation numerical stability
	6.11 Mixed-mode example simulations
	6.12 End Note

	7 Modelling Operational Amplifiers
	7.1 Introduction
	7.2 The Qucs built-in operational amplifier model
	7.3 Adding features to the Qucs OP AMP model
	7.4 Modular operational amplifier macromodels
	7.5 A basic AC OP AMP macromodel.
	7.5.1 The input stage.
	7.5.2 Voltage gain stage 1.
	7.5.3 Derivation of voltage gain stage 1 transfer function
	7.5.4 Output stage.
	7.5.5 A subcircuit model for the basic AC OP AMP macromodel

	7.6 A more accurate OP AMP AC macromodel
	7.6.1 Derivation of voltage gain stage 2 transfer function.
	7.6.2 Simulating OP AMP open loop differential gain

	7.7 Adding common mode effects to the OP AMP AC macromodel
	7.7.1 Simulating OP AMP common-mode effects

	7.8 Large signal transient domain OP AMP macromodels
	7.8.1 Slew rate macromodel derivation
	7.8.2 Modelling OP AMP overdrive and output voltage limiting
	7.8.3 Modelling OP AMP output current limiting

	7.9 Obtaining OP AMP macromodel parameters from published device data
	7.10 More complete design examples.
	7.10.1 Example 1: State variable filter design and simulation
	7.10.2 Example 2: Sinusoidal signal generation with the Wien bridge oscillator

	7.11 Update number one: March 2007
	7.11.1 Building a library component for the modular OP AMP macromodel
	7.11.2 Changing model parameters: use of the SPICEPP preprocessor
	7.11.3 The Boyle operational amplifier SPICE model
	7.11.4 Model accuracy
	7.11.5 The PSpice modified Boyle model

	7.12 Constructing Qucs OPAMP libraries
	7.13 Extending existing OP AMP models
	7.14 End note

	8 Modelling the 555 Timer
	8.1 Introduction
	8.2 The Qucs 555 timer model
	8.2.1 The trigger comparator macromodel
	8.2.2 The threshold comparator macromodel
	8.2.3 The digital logic macromodel
	8.2.4 The 555 timer output amplifier macromodel
	8.2.5 The discharge switch macromodel

	8.3 Published 555 timer test circuits
	8.3.1 The 555 timer monostable pulse generator
	8.3.2 The 555 timer astable pulse oscillator
	8.3.3 Pulse width modulation
	8.3.4 Pulse position modulation

	8.4 Multiple 555 timer simulation examples
	8.4.1 Sequential pulse train generation
	8.4.2 Frequency divider circuit

	8.5 End note

	9 Qucs Simulation of SPICE Netlists
	9.1 Introduction
	9.2 The basic SPICE netlist format
	9.3 Defining symbols for Qucs SPICE netlist components
	9.4 Handling SPICE subcircuits
	9.4.1 Subcircuit example 1: a multisection LC delay line
	9.4.2 Subcircuit example 2: a two section CMOS ring counter

	9.5 Limitations when converting SPICE netlists
	9.6 Extending the SPICE netlist language
	9.6.1 The SPICEPP preprocessor

	9.7 Circuit template models
	9.8 Building circuit design equations into netlists
	9.9 Global nodes
	9.10 End Note

	10 Biasing a BJT Transistor
	10.1 Graphical methods
	10.1.1 Graphical approach shows trade-offs

	10.2 Simulation technics

	11 BJT Modeling and Verification
	11.1 choice of transistor
	11.2 library creation
	11.3 device library verification
	11.4 parasitic description of the package
	11.5 small signal S parameter verification

	12 Power Amplifier Design
	12.1 Field of interest
	12.2 System consideration
	12.3 Biasing consideration
	12.4 Why thermal design ?
	12.4.1 Thermal management

	12.5 DC Power dissipation
	12.6 Small signal analysis

	13 Low Noise Amplifier Design
	13.0.1 System consideration
	13.0.2 Choice of transistor
	13.0.3 library creation
	13.0.4 DC study
	13.0.5 SP study
	13.0.6 Non linearities study
	13.0.7 Possible improvement tips

	14 Microstrip Design
	14.1 10dB Directional Coupler Design
	14.1.1 Some boring theory beforehand
	14.1.2 Design equations
	14.1.3 Applying the design equations
	14.1.4 What next?
	14.1.5 Verification of the design
	14.1.6 Suggested improvements
	14.1.7 Remaining thinkabouts

	15 Measurement Expressions Reference Manual
	15.1 Introduction
	15.2 Using Measurement Expressions
	15.2.1 Entering Measurement Expressions
	15.2.2 Changing Measurement Expressions
	15.2.3 Syntax of Measurement Expressions

	15.3 Functions Syntax and Overview
	15.3.1 Functions Reference Format
	15.3.2 Functions Listed by Category

	15.4 Math Functions
	15.4.1 Vectors and Matrices
	15.4.2 Elementary Mathematical Functions
	15.4.3 Data Analysis

	15.5 Electronics Functions
	15.5.1 Unit Conversion
	15.5.2 Reflection Coefficients and VSWR
	15.5.3 N-Port Matrix Conversions
	15.5.4 Amplifiers

	16 Component, compact device and circuit modelling using symbolic equations
	16.1 Introduction
	16.2 Qucs electronic device and circuit modelling
	16.3 Extending circuit simulation capabilities with equations
	16.3.1 Low pass active filter design with embedded design equations

	16.4 Introduction to Qucs subcircuit parameters
	16.5 Building universal macromodels using subcircuits and parameters
	16.6 More complex nested subcircuit models
	16.7 Introduction to equation defined devices (EDD)
	16.8 The Qucs EDD component
	16.9 Modelling nonlinear resistors
	16.10 Modelling nonlinear capacitors and inductors
	16.11 Compact device modelling using EDD
	16.12 Constructing EDD compact device models and circuit macromodels
	16.13 End Note
	16.14 Appendix A: Qucs constants, operators and functions
	16.15 Appendix B: Constructing subcircuits with parameters
	16.15.1 Enter the series resonance circuit and add input and output pins
	16.15.2 Change the component names to Ls, Cs and Rs
	16.15.3 Construct symbol for new subcircuit
	16.15.4 Add the names of the subcircuit parameters to the LCR symbol
	16.15.5 Test the LCR subcircuit

