НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

## МЕТОДИЧНІ ВКАЗІВКИ ДО ВИКОНАННЯ ЛАБОРАТОРНИХ РОБІТ

## з курсу "Мікропроцесорна техніка"

## Мікроконтролери сімейства STMicroelectronics

Київ 2008

#### МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

## МЕТОДИЧНІ ВКАЗІВКИ ДО ВИКОНАННЯ ЛАБОРАТОРНИХ РОБІТ з курсу "Мікропроцесорна техніка" Мікроконтролери сімейства STMicroelectronics

ДЛЯ СТУДЕНТІВ СПЕЦІАЛЬНОСТІ 7.09.08.03 – "ЕЛЕКТРОННІ СИСТЕМИ" УСІХ ФОРМ НАВЧАННЯ

Затверджено Радою факультету електроніки, протокол № 02/08 від 25.02.2008 р.

Київ НТУУ "КПІ" 2008

Методичні вказівки до виконання лабораторних робіт з курсу "Мікропроцесорна техніка" "Мікроконтролери сімейства STMicroelectronics"для студентів спеціальності 7.09.08.03 – "Електронні системи" всіх форм навчання. - К.: НТУУ "КПІ", 2008. – 51 с.

Навчальне видання

Методичні вказівки до виконання курсових робіт з курсу "Мікропроцесорна техніка" "Мікроконтролери сімейства STMicroelectronics"для студентів спеціальності 7.09.08.03 – "Електронні системи" всіх форм навчання

Укладач

Терещенко Тетяна Олександрівна Петергеря Юлія Сергійовна Хохлов Юрій Вітальович

Рецензенти:

В.В. Рогаль, доц., канд.техн.наук В.А. Тодоренко, доц., канд.техн.наук

Редактор

## 3MICT

| ВСТУП                                                 | 5  |
|-------------------------------------------------------|----|
| Лабораторна робота №1                                 | 6  |
| Порти введення та виведення мікроконтролерів ST7      | 6  |
| Лабораторна робота №2                                 | 11 |
| Система переривань мікроконтролерів ST7               | 11 |
| Лабораторна робота №3                                 | 16 |
| Інтерфейс SPI мікроконтролерів ST7                    | 16 |
| Лабораторна робота №4                                 |    |
| Таймер ART мікроконтролерів ST7                       |    |
| Лабораторна робота №5                                 |    |
| АЦП мікроконтролерів ST7                              |    |
| Додаток А                                             |    |
| Відлагодження програм у середовище ST7 Visual Develop |    |
| Додаток Б                                             |    |
| Лабораторний стенд ST7/ST5                            |    |
| Додаток В                                             |    |
| Система команд мікроконтролерів ST7FLITE              |    |

### вступ

Метою виконання лабораторних робіт є закріплення теоретичних знань основних принципів побудови і функціонування мікропроцесорних пристроїв на базі однокристальних мікроконтролерів, та використання набутих практичних навиків написання програм на асемблері та вивчення програмних та паратних засобів відлагодження програм.

У даних методичних вказівках наведено варіанти завдань для п'яти лаборатоних робіт, що охоплюють відомості по основним функціональним блоках мікроконтролерів сімейства STMicroelectronics, а саме портам введення та виведення інформації, системи переривань, інтерфейсу SPI, таймеру та АЦП.

В кожній роботі наведено теоеретичні відомості, приклад виконання та контрольні запитання.

У Додатках докладно описано програмне середовище та процес програмного відлагодження програм, описаний макет для апаратного відлагодження програм та надана система команд мікроконтролера.

Матеріали даних методичних вказівок може бути використано і при дипломному проектуванні.

## Лабораторна робота №1

### Порти введення та виведення мікроконтролерів ST7

#### Завдання:

Ініціалізувати порти, змінювати режим світіння світлових діодів після кожного натискання на кнопку S5 згідно табл.1.2. Режим світіння світлових діодів задано в табл. 1.1. При роботі у вказаних в таблиці режимах світіння додатково включати із заданою частотою *F* звуковий сигнал та електричний двигун. Плавне регулювання яскравості світлодіодів організувати використовуючи широтно-імпульсну модуляцію.

#### Порядок роботи з макетом:

- Увімкнути всі перемикачі в блоці перемикачів B1/S6.
- Увімкнути джампер W7.
- Якщо в лабораторній роботі використовується звуковий сигнал, то увімкнути джампер W4 та вимкнути світлодіод №3 за допомогою перемикача в B1/S6.
- Якщо в лабораторній роботі використовується електричний двигун, то увімкнути джампер W3.
- Всі інші джампери вимкнути.

#### Таблиця 1.1. Режими світіння\*

| Режим | Опис                                                                                       |
|-------|--------------------------------------------------------------------------------------------|
| 1     | Послідовно засвічувати світлові діоди так, щоб утворилася "крапка, що біжить".             |
|       | Час світіння кожного світлодіода дорівнює Т <sub>1</sub> . Напрямок пересування: від малих |
|       | номерів світлодіодів до великих.                                                           |
| 2     | Послідовно засвічувати світлові діоди так, щоб утворилася "крапка, що біжить".             |
|       | Час світіння кожного світлодіода дорівнює Т <sub>1</sub> . Напрямок пересування: від       |
|       | великих номерів світлодіодів до малих.                                                     |
| 3     | Послідовно засвічувати та гасити кожнен парний та непарний світловий діод.                 |
|       | Час світіння кожного світлодіода дорівнює $T_{1.}$                                         |
| 4     | Циклічно засвічувати та гасити парні світлодіоди.                                          |
|       | Час світіння кожного світлодіода дорівнює Т <sub>1.</sub>                                  |
| 5     | Циклічно засвічувати та гасити непарні світлодіоди.                                        |
|       | Час світіння кожного світлодіода дорівнює $T_{1.}$                                         |
| 6     | Циклічно засвічувати та гасити світлодіоди 1, 2, 5, 6. Час світіння кожного                |
|       | світлодіода дорівнює T <sub>1.</sub> Плавно змінювати яскравість світлодіодів від          |
|       | мінімальної до максимальної та навпаки за проміжок часу T <sub>2.</sub>                    |
| 7     | Циклічно засвічувати та гасити світлодіоди 3, 4, 7, 8.                                     |
|       | Час світіння кожного світлодіода дорівнює Т <sub>1.</sub> Плавно змінювати яскравість      |
|       | світлодіодів від мінімальної до максимальної та навпаки за проміжок часу Т2                |
| 8     | Циклічно засвічувати та гасити світлодіоди 1, 2, 3, 4. Час світіння кожного                |
|       | світлодіода дорівнює Т <sub>1.</sub> Плавно змінювати яскравість світлодіодів від          |
|       | мінімальної до максимальної та навпаки за проміжок часу T <sub>2.</sub>                    |
| 9     | Циклічно засвічувати та гасити світлодіоди 5, 6, 7, 8. Час світіння кожного                |
|       | світлодіода дорівнює Т <sub>1.</sub> Плавно змінювати яскравість світлодіодів від          |
|       | мінімальної до максимальної та навпаки за проміжок часу T <sub>2.</sub>                    |
| 10    | Циклічно засвічувати та гасити всі світлодіоди. Час світіння кожного світлодіода           |
|       | дорівнює $T_1$ . Плавно змінювати яскравість світлодіодів від мінімальної до               |
|       | максимальної та навпаки за проміжок часу Т2                                                |

| Режим | Опис                                                                                       |
|-------|--------------------------------------------------------------------------------------------|
| 11    | Послідовно (за проміжок часу T <sub>2</sub> ) засвічувати світлові діоди поступово         |
|       | збільшуючи яскравість кожного наступного світлодіода так, щоб утворилася                   |
|       | "крапка, що біжить". Яскравість світлодіода №1 мінімальна, №8 — максимальна.               |
|       | Час світіння кожного світлодіода дорівнює Т <sub>1</sub> . Напрямок пересування: від малих |
|       | номерів світлодіодів до великих.                                                           |
| 12    | Послідовно (за проміжок часу T <sub>2</sub> ) засвічувати світлові діоди поступово         |
|       | збільшуючи яскравість кожного наступного світлодіода так, щоб утворилася                   |
|       | "крапка, що біжить". Яскравість світлодіода №1 мінімальна, №8 — максимальна.               |
|       | Час світіння кожного світлодіода дорівнює Т <sub>1</sub> . Напрямок пересування: від       |
|       | великих номерів світлодіодів до малих.                                                     |

<sup>\*</sup> - якщо в лабораторній роботі використовується звуковий сигнал, то засвічувати світлодіод №3 не потрібно.

| N⁰    | Режими світіння | Увімкнути | Увімкнути   | Час <i>T</i> <sub>1</sub> , | Час <i>T</i> <sub>2</sub> , | Час-            |
|-------|-----------------|-----------|-------------|-----------------------------|-----------------------------|-----------------|
| варі- |                 | звуковий  | електричний | c                           | c                           | тота <i>F</i> , |
| анту  |                 | сигнал в  | двигун в    |                             |                             | Гц              |
|       |                 | наступних | наступних   |                             |                             |                 |
|       |                 | режимах:  | режимах:    |                             |                             |                 |
| 1.    | 1, 3, 6, 11     | 1, 6      |             | 0,1                         | 0,5                         | 100             |
| 2.    | 2, 3, 7, 12     |           | 2, 7        | 0,25                        | 0,4                         | 1000            |
| 3.    | 1, 3, 8, 11     | 1, 8      |             | 0,5                         | 0,3                         | 500             |
| 4.    | 2, 4, 9, 12     |           | 4, 9        | 0,8                         | 1,0                         | 1500            |
| 5.    | 1, 4, 10, 11    | 4, 10     |             | 0,2                         | 0,6                         | 1000            |
| 6.    | 2, 4, 6, 12     |           | 4, 12       | 0,6                         | 0,7                         | 2000            |
| 7.    | 1, 5, 7, 11     | 5, 7      |             | 0,9                         | 1,0                         | 1500            |
| 8.    | 2, 5, 8, 12     |           | 2, 8        | 0,5                         | 0,2                         | 2500            |
| 9.    | 1, 5, 9, 11     | 1, 9      |             | 0,1                         | 0,3                         | 2000            |
| 10.   | 2, 3, 10, 11    |           | 3, 10       | 0,5                         | 0,6                         | 3000            |

Таблиця 1.2. Завдання для лабораторної роботи 1

#### Теоретичні відомості

*Порти введення-виведення.* Мікроконтролер ST7 має 15 ліній введення/виведення – 7 ліній порту А та вісім порту В.

Кожен вивід порту може бути запрограмованний на введення або на виведення інформації. До того ж, окремі виводи мають декілька інших функцій, як-то: зовнішнє переривання, дублювати сигнал введення/виведення для периферійного пристрою на кристалі або для аналогового введення.

Для керування лініями порт МК має по три регістри для кожного порту, табл. 1.3 - це регістр даних порта (PADR та PBDR), регістр напряму передачі даних (PADDR, PBDDR), регістр опцій (PAOR, PBOR).

| Порт   | Позначення регістрів |                                | Призначення                            |
|--------|----------------------|--------------------------------|----------------------------------------|
| Порт А | PADR                 | Port A Data Register           | Регістр даних порта А                  |
|        | PADDR                | Port A Data Direction Register | Регістр напряму передачі даних порта А |
|        | PAOR                 | Port A Option Register         | Регістр опцій порта А                  |
| Порт В | PBDR                 | Port B Data Register           | Регістр даних порта В                  |
|        | PBDDR                | Port B Data Direction Register | Регістр напряму передачі даних порта В |
|        | PBOR                 | Port B Option Register         | Регістр опцій порта В                  |

Таблиця 1.3.- Призначення регістрів портів

Скидання DDRx біта в 0 вибирає режим введення. Установка DDRx біта в 1 визначає режим виведення. Дія бітів регістру опцій DORx в режимах введення та виведення відображена в табл 1.4.

| Таблиня    | 1.4- Кона  | вігурація | ліній | портів |
|------------|------------|-----------|-------|--------|
| 1 acountar | 1.1 100110 | pnjpadm   |       | ropino |

|           | Режим конфігурації                        | DDR | DOR |
|-----------|-------------------------------------------|-----|-----|
| Введення  | Високоімпедансний вхід_* (без             | 0   | 0   |
|           | підтягувального резистора)                |     |     |
|           | Вхід з підтягувальним резистором          | 0   | 1   |
| Виведення | За двотактною схемою (Push-Pull)          | 1   | 1   |
|           | За схемою з відкритим стіком (Open Drain) | 1   | 0   |

\* Початковий стан

При використанні лінії для зовнішнього переривання або для аналогового входу АЦП іі треба запрограмувати на режим введення.

Ініціалізація портів полягає у запису даних в регістри напрямку та опцій:

| init_portA: | ld        | A,#INITPADDR | ; 0 - вхід, 1 - вихід відповідного біту регістра<br>DDR                                                                                                                                                                                                |
|-------------|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | ld        | PADDR,A      |                                                                                                                                                                                                                                                        |
|             | ld        | A,#INITPAOR  | <u>;</u> 0 – для вхідного виводу - високоімпедансний<br>вхід; для вихідного виходу – вихід за схемою з<br>відкритим колектором;<br>1 – для вхідного виводу – вхід з підтягувальним<br>резистором; для вихідного виводу – вихід за<br>двотактною схемою |
|             | ld        | PAOR,A       |                                                                                                                                                                                                                                                        |
|             | ret       |              | ; повернення до головної програми                                                                                                                                                                                                                      |
| init_portB: | ld        | A,#INITPBDDR | ; 0 - вхід, 1 - вихід відповідного біту регістра<br>DDR                                                                                                                                                                                                |
|             | ld        | PBDDR,A      |                                                                                                                                                                                                                                                        |
|             | ld        | A,#INITPBOR  | <u>;</u> 0 – для вхідного виводу - високоімпедансний<br>вхід; для вихідного виводу – вихід за схемою з<br>відкритим колектором;<br>1 – для вхідного виводу – вхід з підтягувальним<br>резистором; для вихідного виводу – вихід за<br>двотактною схемою |
|             | ld<br>ret | PBOR,A       | ; повернення до головної програми                                                                                                                                                                                                                      |

Після цього можна виконувати введення та виведення через порти даних. Підпрограма запису в порт має вигляд:

| write_portB: | ld  | A,portB_TX | ; Завантаження значення вмісту комірки пам'яті |
|--------------|-----|------------|------------------------------------------------|
|              |     |            | portB_TX в акумулятор                          |
|              | ld  | PBDDR,A    | ; завантаження вмісту регістра DR порту В з    |
|              |     |            | акумулятора                                    |
|              | ret |            | ; повернення до головної програми              |

Підпрограма читання порту має вигляд:

| read_portB: | ld  | A,PBDR     | ; завантаження вмісту регістра PBDR порту В в                                  |
|-------------|-----|------------|--------------------------------------------------------------------------------|
|             | ld  | portB_RX,A | акумулятор<br>; Завантаження вмісту акумулятора у комірку<br>пам'яті port B RX |
|             | ret |            | ; повернення до головної програми                                              |

#### Приклад виконання лабораторного завдання

<u>Завдання:</u>

Циклічно засвічувати та гасити світлодіод №8. Період переключення світлодіода 0,5 сек.

```
<u>Текст програми:</u>
 ІНІЦІАЛІЗАЦІЯ ПОРТІВ ST7
 init_ST7:
     clr
         MCCSR
                         ; нормальний режим
     ret
init_led_ports:
     push a
ld a
         a,
           #%10000000
                          переключаємо лінію 7 порту А у режим
         PADDR, a
a, #%10000000
                          виводу (push-pull)
     ٦d
     1d
         PÁOR, a
     ٦d
                         ;
     pop
         а
     ret
МІСЦЕ ДЛЯ ПІДПРОГРАМ
write_portA:
         A, portA_TX
                         ; Завантаження значення вмісту комірки
                          пам'яті portA_TX в акумулятор
завантаження вмісту регістра DR порту А
     ٦d
         PADR, A
                          з акумулятора
                          повернення
     ret
read_portA:
                          завантаження вмісту регістра PADR
     1d
         A, PADR
                          порту А в акумулятор
                          Завантаження вмісту акумулятора у комірку пам'яті portA_RX
     1d
         portA_RX,A
     ret
                          повернення
led on:
     push a
                         ;
     call read_portA
     ٦d
         a, portA_RX
         a, #%10000000
                         ; ВМИКАЄМО світлодіод №8
     or
     ld portA_TX, a call write_portA
     pop
         а
                         ;
     ret
led_off:
     push a
call read_portA
                         ;
         a, portA_RX
     1d
                         ; ВИМИКАЄМО світлодіод №8
         a, #%01111111
     and
     1d
         portA_TX, a
```

|                 | call<br>pop<br>ret                               | write_portA<br>a                                     | ;                                       |                                                                                            |
|-----------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|
| delay           | :                                                |                                                      | ;                                       | Підпрограма затримки<br>256*(256*(3+4)+3+3+2)+3+4+2+5+4+6 $\approx 0.5$ сек                |
| doc 2           | push<br>push<br>ld                               | x<br>y<br>x,#\$ff                                    | ,                                       |                                                                                            |
| dec 1           | ld                                               | y,#\$ff                                              |                                         |                                                                                            |
| dec_1:          | dec<br>JRNE<br>dec<br>JRNE<br>pop<br>pop<br>ret  | y<br>dec_1<br>x<br>dec_2<br>y<br>x                   |                                         |                                                                                            |
| *****           | * * * * * *                                      | *****                                                | ***                                     | *******                                                                                    |
| ; голо          | ОВНА Г                                           | ΙΡΟΓΡΑΜΑ ST7                                         |                                         |                                                                                            |
| ;*****<br>main: | *****                                            | *****                                                | ***                                     | ****************                                                                           |
|                 | RSP<br>sim<br>call<br>call                       | init_ST7<br>init_led_ports                           | ,<br>,<br>,                             | Скидаємо покажчик стеку<br>Маскуємо переривання<br>Ініціалізація                           |
| Start           | call<br>call<br>call<br>call<br>call<br>JP<br>JP | led_on<br>delay<br>led_off<br>delay<br>start<br>main | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ВМИКАЄМО світлодіод<br>затримка<br>ВИМИКАЄМО світлодіод<br>затримка<br>зациклюємо програму |

#### Контрольні запитання

- 1. З якою метою створена *RISC*-архітектура?
- 2. Назвіть переваги *RISC*-архітектури над *CISC*-архітектурою.
- 3. Які недоліки має *RISC* –архітектура?
- 4. Дайте характеристику ОМК сімейства ST7
- 5. Як відбувається звернення до портів введення-виведення?
- 6. Які можливості конфігурації мають порти введення-виведення?
- 7. Назвіть режими введення
- 8. Назвіть режими виведення.
- 9. Які засоби програмування мають порти введення виведення?

## Лабораторна робота №2

#### Система переривань мікроконтролерів ST7

#### Завдання:

Написати програму керування заданим світлодіодом та звуковим сигналом за допомогою кнопок S4 та S5 згідно заданому у варіанті способу (таблиці 2.1 та 2.2). Для цього ініціалізувати систему переривань для роботи у заданому режимі та організувати обробку відповідних переривань.

Модифікувати програму, що була розроблена в лабораторній роботі №1, організувавши обробку натискання кнопки S5 з використанням системи переривань.

#### Порядок роботи з макетом:

- Вимкнути всі перемикачі в блоці перемикачів B1/S6.
- Вимкнути джампери W4 та W6.
- Увімкнути джампери W3, W5 та W7.

#### Таблиця 2.1. - Способи керування світлодіодом:

| Режим | Опис                                                                       |
|-------|----------------------------------------------------------------------------|
| 1.    | Засвічувати та гасити світлодіод заданою кнопкою по задньому фронту та     |
|       | низькому рівню. Періодично один раз на секунду засвічувати світлодіод на   |
|       | короткий час при утриманні кнопки в натиснутому стані більше 1 секунди.    |
| 2.    | Засвічувати та гасити світлодіод заданою кнопкою по передньому фронту.     |
|       | Кожне третє натискання кнопки ігнорувати.                                  |
| 3.    | Засвічувати та гасити світлодіод заданою кнопкою по задньому фронту. Після |
|       | кожного третього натискання кнопки видавати короткий звуковий сигнал.      |
| 4.    | Засвічувати та гасити світлодіод заданою кнопкою по передньому та задньому |
|       | фронту Кожне третє натискання кнопки ігнорувати                            |

| № варіанту | Спосіб    | Кнопка     |
|------------|-----------|------------|
|            | керування |            |
| 1.         | 1         | S4         |
| 2.         | 2         | S4         |
| 3.         | 3         | S4         |
| 4.         | 4         | S4         |
| 5.         | 1         | S5         |
| 6.         | 2         | S5         |
| 7.         | 3         | S5         |
| 8.         | 4         | <u>S</u> 5 |
| 9.         | 1         | <u>S</u> 4 |
| 10.        | 2         | S5         |

#### Таблиця 2.2. Завдання для лабораторної роботи 2

#### Теоретичні відомості

**Переривання.** МК ST7 має два різні типи переривань: масковані і не масковані. Не масковане програмне переривання активується командою TRAP і виконується незалежно

від стану біта І. Типи переривань і початкові адреси підпрограм їх обробки наведено в табл. 2.3.

Перед виконанням переривання в стек записується: адреса команди, на яку треба повернути після обробки переривання (зміст регістра РС), регістри Х, А, СС. Зміну всіх параметрів, що зв'язані з перериваннями рекомендують робити при заборонених перериваннях. Програма обробки переривання повинна закінчитися командою IRET, яка відновлює значення збережених регістрів із стека.

| N⁰ | Джерело       | Опис                                                         | Пріоритет            | Адреси підпрограми (вектор) |
|----|---------------|--------------------------------------------------------------|----------------------|-----------------------------|
| 1  | RESET         | Скидання                                                     | Високий              | FFFEH – FFFFH               |
| 2  | TRAP          | Програмне переривання                                        | пріоритет            | FFFC – FFFDH                |
| 3  | AWU           | Автопробудження від переривання                              |                      | FFFA – FFFBH                |
| 4  | ei0           | Зовнішне переривання 0                                       |                      | FFF8H – FFF9H               |
| 5  | eil           | Зовнішне переривання 1                                       |                      | FFF6H – FFF7H               |
| 6  | ei2           | Зовнішне переривання 2                                       |                      | FFF4H – FFF5H               |
| 7  | ei3           | Зовнішне переривання 3                                       |                      | FFF2H – FFF3H               |
| 8  | LITE<br>TIMER | LITE таймер RTC2 –<br>переривання по<br>переповненню         |                      | FFF0H – FFF1H               |
| 9  |               | Не використовується                                          |                      | FFEEH – FFEFH               |
| 10 | SI            | AVD переривання                                              |                      | FFECH – FFEDH               |
| 11 | AT TIMER      | АТ таймер, який порівнює<br>виходне переривання з<br>входним |                      | FFEAH – FFEBH               |
| 12 |               | АТ таймер – переривання по переповненню                      |                      | FFE8H – FFE9H               |
| 13 | LITE<br>TIMER | LITE таймер – захват<br>вхідного переривання                 |                      | FFE6H – FFE7H               |
| 14 |               | LITE таймер RTC1–<br>переривання по<br>переповненню          |                      | FFE4H – FFE5H               |
| 15 | SPI           | SPI переривання<br>введеня/виведення                         |                      | FFE2H – FFE3H               |
| 16 |               | Не використовується                                          | Низький<br>пріоритет | FFE0H-FFE1H                 |

Таблиця 2.3. - Джерела переривань

Як видно з табл. 2.3, МК може обробляти 4 зовнішні переривання, причому можна програмно задати як чутливість (тип сигналу) переривання, так і номер виводу ВІС МК. Тип сигналу задається за допомогою регістра керування зовнішніми перериваннями EICR (EXTERNAL INTERRUPT CONTROL REGISTER). Формат регістра EICR подано на рис.2.1.

| 1 | ,    |      |      |      |      |      |      |      | 0 |
|---|------|------|------|------|------|------|------|------|---|
|   |      |      |      |      |      |      |      |      |   |
|   | IS31 | IS30 | IS21 | IS20 | IS11 | IS10 | IS01 | IS00 |   |

Рисунок 2.1 - Формат регістра EICR

Біти IS0[1:0], IS1[1:0], IS2[1:0], IS3[1:0], визначають чутливість зовнішнього переривання 0-3. відповідно згідно з табл. 2.4.

Таблиця 2.4. Чутливість зовнішнього переривання

| Isx1 | Isx0 | Чутливість зовнішнього переривання |
|------|------|------------------------------------|
| 0    | 0    | По спаду і низькому рівню          |
| 0    | 1    | Тільки по фронту                   |
| 1    | 0    | Тільки по спаду                    |
| 1    | 1    | По спаду і по фронту               |

Номер виводу BIC МК задається за допомогою регістру вибору зовнішнього переривання EISR (EXTERNAL INTERRUPT SELECTION REGISTER) Формат регістра EISR подано на рис.2.2.

| 7 |      |      |      |      |      |      |      |      | 0 |
|---|------|------|------|------|------|------|------|------|---|
|   | ei31 | ei30 | ei21 | ei20 | ei11 | ei10 | ei01 | ei00 |   |

Рисунок 2.2. Формат регістра EISR

Біти еі3[1:0] вибірають лінію введення/виведення для зовнішнього переривання 3 відповідно до табл. 2.5.

Таблиця 2.5. - Вибір зовнішнього переривання 3

| ei31 | ei30 | Лінії введення/виведення |
|------|------|--------------------------|
| 0    | 0    | PB0*                     |
| 0    | 1    | PB1                      |
| 1    | 0    | PB2                      |

\* Стан скидання

Біти ei2[1:0] вибірають лінію введення/виведення для зовнішнього переривання 2 відповідно до табл. 2.6.

Таблиця 2.6. Вибір зовнішнього переривання 2

| ei21 | ei20 | Введення/виведення |
|------|------|--------------------|
| 0    | 0    | PB3*               |
| 0    | 1    | PB4                |
| 1    | 0    | PB5                |
| 1    | 1    | PB6                |

\* Стан скидання

Біти ei1[1:0] вибірають лінію введення/виведення для зовнішнього переривання 1 відповідно до табл. 2.7.

|           | $\sim -$ | D ~.    | •               |             | 1 |
|-----------|----------|---------|-----------------|-------------|---|
|           | ) ] .    | - Ruhin | 30BH1111HF0L0   | переривания |   |
| таолици 2 | 2.1      | Dhoip   | JODIIIIIIIIDOLO | переривания | T |

| ei11 | ei10 | Введення/виведення |
|------|------|--------------------|
| 0    | 0    | PA4                |
| 0    | 1    | PA5                |
| 1    | 0    | PA6                |
| 1    | 1    | PA7*               |

#### \* Стан скидання

Біти еі0[1:0] вибирають лінію введення/виведення для зовнішнього переривання 0 відповідно до табл. 2.8.

| ei01 | ei00 | Введення/виведення |
|------|------|--------------------|
| 0    | 0    | PA0*               |
| 0    | 1    | PA1                |
| 1    | 0    | PA2                |
| 1    | 1    | PA3                |

| т с     | <b>A</b> O | D ~.  | •              |      |           | 0 |
|---------|------------|-------|----------------|------|-----------|---|
| Гаопиня | 7 X        | Вибір | 30BH1IIIHLOFO  | пере | пивання   | U |
| гиолици | 2.0.       | Dhoip | JODIIImiiboi o | nope | pribailin | v |

\* Стан скилання

#### Приклад виконання лабораторного завдання

Завдання:

Циклічно засвічувати та гасити світлодіод №8. Період переключення світлодіода 0,5 сек. При натисканні кнопки S4 передчасно гасити світлодіод №8.

```
<u>Текст програми:</u>
 ІНІЦІАЛІЗАЦІЯ ПОРТІВ ТА ПЕРЕРИВАНЬ ST7
 init_ST7:
     clr
           MCCSR
                             ; нормальний режим
      ret
init_led_ports:
      push a
ld a
                              переключаємо лінію 7 порту А у режим
виводу (push-pull) та лінію 3 порту А
у режим введення (floating/pull-up
interrupt)
           a, #%1000000
      ٦d
           PADDR, a
                             ;;
           a, #%10001000
      ٦d
      ٦d
           PAOR, a
      рор
                             ;
           а
      ret
init_interrupt:
      push a
ld a
           a,#%00000010
                              настроюємо EICR на зовнішнє переривання еіО
                             ;
                              (режим: Falling edge only)
           EICR,a
a,#%00000011
      ٦d
                             ; настроюємо EISR на зовнішнє переривання еіО
      ٦d
                             ; по лінії РАЗ
      ٦d
           EISR,a
      pop
           а
      ret
```

```
ГОЛОВНА ПРОГРАМА ST7
main:
                           ; Скидаємо покажчик стеку
     RSP
     sim
                             Маскуємо переривання
                           .
     call init_ST7
call init_led_ports
                            Ініціалізація (див. приклад для ЛР1)
start:
                           ; ВМИКАЄМО світлодіод (див. приклад для ЛР1)
     call led on
                           ; затримка (див. приклад для ЛР1)
; ВИМИКАЄМО світлодіод (див. приклад для ЛР1)
; затримка (див. приклад для ЛР1)
     call delay
     call
          led_off
     call delay
                           ; затримка (див. прик.
; зациклюємо програму
     JP
          start
     JP
          main
```

Внести зміни у відповідні частини заготовки програми:

```
МІСЦЕ ДЛЯ ПІДПРОГРАМ ПЕРЕРИВАНЬ
ext0_rt:
  sim
  push a
  push x
  push y
call led_off
  call delay
call delay
call delay
  рор у
  pop x
  pop a
rim
  IRET
******
ДЕКЛАРУВАННЯ ВЕКТОРІВ ПЕРЕРИВАННЯ
******
ext0_it DC.W ext0_rt
              ; Adresse FFF8-FFF9h
```

#### Контрольні запитання

- 1. Які особливості організації стека МК ST7?
- 2. Яка структура пам'яті МК ST7?
- 3. Назвіть джерела тактових сигналів МК ST7
- 4. Назвіть випадки, коли МК ST7 входить в режим МК ST7 скидання.
- 5. На які види сигналів зовнішнього переривання реагує МК ST7?
- 6. Як відбувається перехід на підпрограму переривання?

## Лабораторна робота №3

### Інтерфейс SPI мікроконтролерів ST7

#### Завдання:

Ініціалізувати інтерфейс SPI, обравши для цього лінію порту PB1 для сигналу SCK, PB2 — для сигналу MISO, PB3 — для сигналу MOSI згідно завданням табл.. 3.1. та 3.2. Ініціалізувати контролер світлодіодного дисплею MAX7219. Вивести на світлодіодний дисплей інформацію та змінювати покази світлодіодного дисплею способом згідно свого варіанту по сигналу з кнопок.

#### Порядок роботи з макетом:

- Вимкнути всі перемикачі в блоці перемикачів В1/S6.
- Вимкнути джампери W4 та W6.
- Увімкнути джампери W3, W5 та W7.

Таблиця 3.1. - Способи керування світлодіодним дисплеєм:

| Режим | Опис                                                                                |
|-------|-------------------------------------------------------------------------------------|
| 1.    | Забезпечити блимання одного з розрядів дисплею. Кнопкою А перемістити               |
|       | блимання на сусідній розряд праворуч. Кнопкою В збільшувати на одиницю              |
|       | число, що відображається розрядом, який блимає. При утриманні кнопки В,             |
|       | число в розряді змінювати зі швидкістю 5 чисел на секунду.                          |
| 2.    | Забезпечити блимання одного з розрядів дисплею. Кнопкою А перемістити               |
|       | блимання на сусідній розряд ліворуч. Кнопкою В зменшувати на одиницю число,         |
|       | що відображається розрядом, який блимає. При утриманні кнопки В, число в            |
|       | розряді змінювати зі швидкістю 3 чисел на секунду.                                  |
| 3.    | Вивести на дисплей довільне число. Після натискання кнопки А почати на              |
|       | одиницю збільшувати число на дисплеї зі швидкістю N чисел на секунду.               |
|       | Після натискання кнопки В плавно змінити швидкість зміни чисел до 0. Після          |
|       | повної зупинки увімкнути на короткий час електричний двигун.                        |
| 4.    | Вивести на дисплей довільне число. При утриманні кнопки А збільшувати число,        |
|       | що відображається розрядами 1 та 2, а при утриманні кнопки В — розрядами 3 та       |
|       | 4. Числа змінювати зі швидкістю <i>N</i> чисел на секунду. Після відпускання кнопки |
|       | плавно зупинити зміну числа у відповідних розрядах. Після повної зупинки            |
|       | увімкнути на короткий час електричний двигун.                                       |
| 5.    | Організувати смугу прокрутки послідовності 16-значних цифр. Напрямок                |
|       | прокрутки змінювати кнопкою А. Швидкість прокрутки дискретно змінювати              |
|       | кнопкою $B$ від 0 до $N$ зсувів на один розряд на секунду із кроком $N/5$ по колу.  |
|       | При досяганні максимальної швидкості <i>N</i> , увімкнути на короткий час           |
|       | електричний двигун.                                                                 |
| 6.    | Організувати смугу прокрутки послідовності 16-значних цифр. Напрямок                |
|       | прокрутки змінювати кнопкою А. Швидкість прокрутки плавно змінювати при             |
|       | утриманні кнопки В від 0 до N зсувів на один розряд на секунду. При досяганні       |
|       | максимальної швидкості <i>N</i> , увімкнути на короткий час електричний двигун,     |
|       | зачекати 0,5 секунди, скинути швидкисть до 0, зачекати 0,2 секунди, почати знову    |
|       | зольшувати швидкість.                                                               |

| Режим | Опис                                                                             |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------|--|--|--|--|--|
| 7.    | Запрограмувати електронний таймер зворотного відліку. Кнопкою А таймер           |  |  |  |  |  |
|       | переводиться в режим програмування. У режимі налаштування один з розрядів        |  |  |  |  |  |
|       | повинен блимати, кнопкою А блимання переміщувати на сусідній розряд              |  |  |  |  |  |
|       | праворуч, а при утриманні кнопки В, число в розряді збільшувати зі швидкістю 5   |  |  |  |  |  |
|       | чисел на секунду. Налаштування завершується після встановлення чисел у всі 4     |  |  |  |  |  |
|       | розряди. Кнопкою В налаштований таймер запускається у роботу. Змінювати          |  |  |  |  |  |
|       | числа у 4-му розряді зі швидкістю <i>N</i> чисел на секунду. При досяганні нуля, |  |  |  |  |  |
|       | увімкнути на короткий час електричний двигун.                                    |  |  |  |  |  |

| №<br>варі-<br>анту | Спосіб<br>керування | Кнопка<br>А | Кнопка<br>В | Швидкість<br>N |
|--------------------|---------------------|-------------|-------------|----------------|
| 1.                 | 1, 3                | S4          | S5          | 10000          |
| 2.                 | 2, 4                | S4          | S5          | 100            |
| 3.                 | 1, 5                | S4          | S5          | 25             |
| 4.                 | 2, 6                | S4          | S5          | 25             |
| 5.                 | 1, 7                | S4          | S5          | 5              |
| 6.                 | 2, 3                | S5          | S4          | 6000           |
| 7.                 | 1, 4                | S5          | S4          | 50             |
| 8.                 | 2, 5                | S5          | S4          | 50             |
| 9.                 | 1, 6                | S5          | S4          | 50             |
| 10.                | 2, 7                | S5          | S4          | 10             |

Таблиця 3.2. Завдання для лабораторної роботи 3

#### Теоретичні відомості

*Послідовний периферійний інтерфейс SPI (*Serial Peripheral Interface) призначенний для обміну даних у послідовному форматі між мікроконтролером і різноманітними периферійними пристроями або між декількома мікроконтролерами ST7.

Дані для передачі, а токож прийняті дані записуються в регістр введення/виведення. даних SPIDR. При обміні даними по інтерфейсу SPI мікроконтролер може працювати як у режимі Master, так і в режимі Slave.

Схема підключення двох ВІС МК по інтерфейсу SPI наведена на рис.3.1.



Рисунок 3.1 - Схема підключення двох ВІС МК по інтерфейсу SPI

Обмін по протоколу SPI здійснюється за допомогою 4 виводів BIC:

– MISO (Master In / Slave Out data) – вхід даних для ведучого Master пристрою та вихід для веденого Slave пристрою;

– MOSI ( Master Out / Slave In data) - вихід даних для ведучого та вхід Master пристрою для веденого Slave пристрою;

– SCK (Serial Clock out by SPI masters and input by SPI slaves) - тактові імпульси (генеруються ведучим пристроєм і є входними для веденого пристрою)

– SS ( Slave select) вибір пристрою : 0 для Slave і 1 для Master пристрою.

Регістр керування SPICR (рис. 3.2) задає режим *Master /Slave*, частоту послідовного обміну, фазу та полярність імпульсів, дозвіл переривання.



Рисунок 3.2. Формат регістра керування SPI SPICR

На рис. 3.2 позначено: Біт **SPIE** (*Serial Peripheral Interrupt Enable*)- дозвіл переривання SPI; Біт **SPE** (*Serial Peripheral Output Enable*) - дозвіл виходу SPI; Біт **SPR2** (*Divider Enable*) – дозвіл ділення частоти (табл. 3.3); Біт **MSTR** (*Master Mode*)- режим *Master;* Біт **CPOL** (*Clock Polarity*) - полярність імпульсів; Біт **CPHA** (*Clock Phase*)- фаза імпульсів; Біти **SPR**[1:0] (*Serial Clock Frequency*)- завдання частоти (табл. 3.3).

| Serial Clock          | SPR2 | SPR1 | SPR0 |
|-----------------------|------|------|------|
| $f_{CPU}/4$           | 1    | 0    | 0    |
| $f_{CPU}/8$           | 0    | 0    | 0    |
| $f_{CPU}/16$          | 0    | 0    | 1    |
| $f_{CPU}/32$          | 1    | 1    | 0    |
| $f_{CPU}/64$          | 0    | 1    | 0    |
| f <sub>CPU</sub> /128 | 0    | 1    | 1    |

Таблиця 3.3 – Завдання частоти роботи SPI

Діаграми обміну по інтерфейсу SPI ( рис. 3.4) пояснюють вибір полярності та фази тактових імпульсів.



Рисунок 3.4 - Діаграми обміну по інтерфейсу SPI

Регістр керування/статусу SPICSR (рис. 3.5) містить наступні біти:

| ſ    |      |     |      |   |     |     | 0  |
|------|------|-----|------|---|-----|-----|----|
| SPIF | WCOL | OVR | MODE | - | SOD | SSM | 88 |

Рисунок 6.45. Формат регістра керування/ статусу SPICSR

Біт **SPIF** (*Serial Peripheral Data Transfer Flag*) - прапорець завершення передачі; Біт **WCOL** (*Write Collision status*) - помилка запису - завантаження регістру даних SPI під час передавання;

Біт OVR (SPI Overrun error) – помилка переповнення;

Біт MODF (Mode Fault flag) - прапорець аварійного режиму;

Біт SOD (SPI Output Disable) – вихід SPI заборонений;

Біт SSM (SS Management) - при 0 керування від зовнішнього пристрою;

Біт SSI (SS Internal Mode) – при 0 вибір пристрою Slave.

#### Приклад виконання лабораторного завдання

Завдання:

Вивести на 4-розрядний семисегментний дисплей число «1980» застосувавши для цього SPI інтерфейс.

Текст програми: ΙΗΙЦΙΑΛΙЗΑЦΙЯ ΠΟΡΤΙΒ ST7 init\_ST7: clr ; нормальний режим MCCSR ret init\_IO: A,#%00000000 ; Настроювання регістру PADDR ٦d (настройка порту А для введення для всіх виводів) ٦d PADDR,A ld a, #%00001000 ; PA3 в режимі input/interrupt 1d PAOR, A 1d A,#%00001110 Настроювання регістру PBDDR ; (настройка порту В на виведення для виводів 1,2,3) ٦d PBDDR,A Hacтроювання pericтру PBOR (setup port's B pins 1,2,3 for push-pull output) 1d A,#%00001110 1d PBOR, A ret \*\*\*\*\* ІНІЦІАЛІЗАЦІЯ SPI init\_SPI: 1d A.#%00000011 Настроювання perictpy SPISR (SPI status register) SPISR,A Вмикаємо режим Master для SPI (SSM=1, SSI=1) ٦d Hастроювання регістру SPICR (SPI control register) A,#%01011100 1d СРНА=1 -- SPI дані запам'ятовуються по задньому фронту тактового імпульсу CPOL=1 -- вивід SCK в стані очікування буде "1" MSTR=1 -- режим Master. Функція виводу SCK змінюється з режиму введення в режим виведення та функції виводів MISO та MOSI є зарезервованими. SPE=1 -- Serial Peripheral Output Enable (альтернативні функції виводів SPI активовані) 1d SPICR,A ret ГОЛОВНА ПРОГРАМА ST7 main: RSP Скидаємо покажчик стеку Sim Маскуємо переривання ; Ініціалізація ST7 call init\_ST7 call init\_IO call init\_SPI ; Ініціалізація портів Ініціалізація SPI ; call MAX7219\_Init ; ІНіціалізація ни ; Очистка дисплею Ініціалізація МАХ7219 call MAX7219\_Clear

| start:                            |                                        |
|-----------------------------------|----------------------------------------|
| ]d A,#1                           | ; вибір розряду №1                     |
| ld DisplayChar_Digit,A            | · · · · · · · · · · · · · · · · · · ·  |
| Id A,#1                           | ; Вивід цифри "⊥"                      |
| call MAX7219 DisplayChar          | .er, А                                 |
| ld A.#2                           | : вибір розрял∨ №2                     |
| ld DisplayChar_Digit,A            | , 500 p posping,                       |
| ld A,#9                           | ; Вивід цифри "9"                      |
| ld DisplayChar_Charact            | er,A                                   |
| call MAX7219_DisplayChar          |                                        |
| IU A,#3<br>Id DisplayChar Digit A | ; виотр розряду №з                     |
| $1d  \Delta \# 8$                 | . Вивіл цифри 8"                       |
| ld DisplayChar_Charact            | er,A                                   |
| call MAX7219_DisplayChar          | , , , , , , , , , , , , , , , , , , ,  |
| ]d A,#4                           | ; Вибір розряду №4                     |
| ld DisplayChar_Digit,A            | · · ·································· |
| IC A,#U                           | ; ВИВІД ЦИФРИ "О"                      |
| call MAX7219 DisplayChar          | .er , A                                |
|                                   |                                        |
| JP start ;                        | зациклюємо програму                    |
| JP main                           |                                        |

#### Контрольні запитання

- 1. Назвіть режими енергоспоживання МК ST7 в порядку зменшення споживання.
- 2. В чому полягає відмінність режимів холостого ходу та мікроспоживання?
- 3. Чим відрізняється режим зберігання енергії від режиму мікроспоживання?
- 4. Чим відрізняється основний режим очікування від режиму мікроспоживання?
- 5. Яке призначення інтерфейсу SPI МК ST7?

## Лабораторна робота №4

### Таймер ART мікроконтролерів ST7

#### Завдання:

Ініціалізувати таймер. Використовуючи таймер забезпечити блимання першого світлодіода із заданою частотою *F* у двох режимах: дискретному та плавному (використовуючи *PWM* – широтно-імпульсну модуляцію). Кнопкою *A* змінювати режими блимання між собою. (табл. 4.1). Кнопкою *B* вмикати та вимикати блимання.

Модифікувати програму, що була розроблена в лабораторній роботі №3, організувавши необхідні затримки за допомогою таймеру.

#### Порядок роботи з макетом:

- Вимкнути всі перемикачі в блоці перемикачів B1/S6.
- Вимкнути джампери W4 та W6.
- Увімкнути джампери W3, W5 та W7.

| №<br>варі-<br>анту | Кнопка<br>А | Кнопка<br>В | Частота<br>F, Гц |
|--------------------|-------------|-------------|------------------|
| 1.                 | S4          | S5          | 1                |
| 2.                 | S5          | S4          | 3                |
| 3.                 | S4          | S5          | 5                |
| 4.                 | S5          | S4          | 7                |
| 5.                 | S4          | S5          | 10               |
| 6.                 | S5          | S4          | 4                |
| 7.                 | S4          | S5          | 2                |
| 8.                 | S5          | S4          | 6                |
| 9.                 | S4          | S5          | 12               |
| 10.                | <b>S</b> 5  | S4          | 3                |

#### Таблиця 4.1. Завдання для лабораторної роботи 4

#### Теоретичні відомості

*Таймер ART* являє собою 12- бітний таймер з автоперезавантаженням Призначений для:

- Реалізації часових затримок;
- Генерації переривань при переповненні, захопленні, порівнянні;
- Генерації 4 незалежних ШІМ сигналів.

Таймер заснований на автономному (несинхронізованному) 12-бітовому інкрементному лічильнику з вхідним автоперезавантажувальним регістром і 4-мя вихідними РWM каналами Має 6 зовнішніх виводів:

- 4 виходи ШІМ;
- вхід ATIC (AT input capture) для функції захоплення введення;
- вхід BREAK для ШІМ (для припинення сигналу на PWM виводах). Основні характеристики ART наступні:
- Частота лічби 2КГц-4МГц при f<sub>CPU</sub>= 8 МГц;
- Керування полярністю сигналів на входах і виходах;
- Масковані переривання при переповненні таймеру, при порівнянні та захопленні.

*Реалізації часових затримок*. При переповненні 12-бітового лічильнику CNTR встановлюється прапор переповнення OVF в регістрі контроля/статусу ARTCSR, що свідчить про закінчення певного інтервалу часу. Цей інтервал можна змінювати записом коду в регістр автоперезавантаження ATR та зміною частоти лічильних імпульсів. За одиничним станом прапора переповнення OVF лічильник переходить з стану FFFh в стан коду ATR (значення автоперезавантаження).

Захоплення події. За переднім або заднім фронтом на виводі АТІС мікроконтролера вміст 12-бітного лічильника CNTR запам'ятувається у регістрі АТІСR, при цьому встановлюється біт ICF та якщо переривання дозволено (біт ICIE встановлений) воно генерується. Біт ICF скидається при читанні АТІСR регістра. Регістр АТІСR доступний лише для читання і він завжди містить значення н інкрементуючого лічильника, яке відповідає останньому захопленню вхідних даних. Будь-яке подальше захоплення даних забороняється, поки біт ICF виставлений.

*Режим порівняння.* Щоб використовувати цю функцію необхідно завантажити 12бітне значення в регістри DCRxH і DCRxL Коли лічильник (CNTR) досягне значення, яке зберігається в DCRxH і DCRxL регістрах, то CMPF біт в PWMxCSR встановиться в 1 і згенерує запит на переривання, якщо встановлений біт CMPIE дозволу переривання.

*Генерація ШІМ сигналів.* РWM режим дозволяє згенерувати до 4-х ШІМ сигналів. PWMx вихідні сигнали можуть бути дозволені або заборонені бітом OEx в регістрі PWMCR. Чотири PWM сигнали мають однакову частоту ( $f_{PWM}$ ), яка задається частотою лічильника і значенням регістра ATR як:

$$f_{PWM} = f_{COUNTER} / (4096 - ATR)$$

$$(4.1)$$

3 формули (4.1) можна зробити наступні виводи:

- Якщо  $f_{COUNTER}$ =32 МГц, максимальне значення  $f_{PWM}$ =8МГц (значення perictpy ATR = 4092), мінімальне значення 8 КГц (значення perictpy ATR = 0)
- Якщо f<sub>COUNTER</sub>=4 МГц, максимальне значення f<sub>PWM</sub>=2МГц (значення perictpy ATR = 4094), мінімальне значення 1 КГц (значення perictpy ATR = 0)

Функція останову (Break) активується зовнішнім сигналом BREAK на одноіменому виводі (активний рівень - 0), рис. 4.1.



Рисунок 4.1 – Дія сигналу BREAK на ШІМ виходи

Для того, щоб використовувати BREAK вивід він повинен бути заздалегідь дозволений програмно, установкою BPEN бита в регістрі BREAKCR. Коли низький рівень визначений на BREAK виводі, то BA біт встановлюється в 1 і функція зупинки активується. Послідовність всіх 4 ШІМ припиняється, 12-бітний PWM лічильник, регістри ARR, PWMCR, DCRx і відповідні тіньові регістри встановлюються в свої початкові значення. при скиданні.

#### Опис регістрів таймеру.

**Регістр керування/стану таймера ATCSR (**AUTORELOAD TIMER CONTROL STATUS REGISTER )

Регістр допускає читання та запис. Значення скидання: 0x00 0000. Формат регістра **ATCSR** подано на рис.4.2.

|   |     |      |     |     |     | 0     |       |
|---|-----|------|-----|-----|-----|-------|-------|
| 0 | ICF | ICIE | CK1 | CK0 | OVF | OVFIE | CMPIE |

Рисунок 4.2. Формат регістра ATCSR

На рис. 4.2 позначено:

7

Біт ICF (*Input Capture Flag*) - прапор вхідного захоплення. Цей біт встановлюється апаратно і скидається програмно при читанні ATICR регістра (дозвіл на читання з ATICRH або ATICRL скидатиме цей прапор). Запис в цей біт не міняє його значення. Якщо ICF= 1, то вхідне захоплення виконане.

Біт ICIE (*IC Interrupt Enable*) – дозвіл IC переривання. Цей біт встановлюється і скидається програмно. Якщо біт дорівнює 0, то переривання вхідного захоплення заборонено, якщо 1- то переривання вхідного захоплення дозволено.

Біти СК[1:0] (*Counter Clock Selection*) - вибір генератора лічильника. Ці біти встановлюються і скидаються програмно і скидаються апаратно після сигналу RESET. Вони визначають частоту генератора лічильника (табл.4.3). Зміна вступає в дію після переповнення.

Біт OVF (*Overflow Flag*) - прапор переповнення. Цей біт встановлюється апаратно і скидатися програмно при читанні TCSR регістра. Він відображає перехід стану лічильника з FFFh в ATR значення (автоперезавантаження). Якщо біт дорівнює 0, то переповнення лічильника не відбулося., якщо 1 – то відбулося.

| Вибір генератора                                       | CK1 | CK0 |
|--------------------------------------------------------|-----|-----|
| лічильника                                             |     |     |
| Викл.                                                  | 0   | 0   |
| f <sub>LTIMER</sub> (період1мс при f <sub>cpu</sub> =8 | 0   | 1   |
| Мгц)                                                   |     |     |
| f <sub>cpu</sub>                                       | 1   | 0   |
| 32 МГц                                                 | 1   | 1   |

Таблиця 4.3. Вибір генератора лічильника

Біт OVFIE (*Overflow Interrupt Enable*) – дозвіл переривання від переповнення. Цей біт встановлюється/скидається програмно і скидається апаратно після сигналу RESET. Якщо біт дорівнює 0, то OVF переривання відключене, якщо – 1, то OVF переривання дозволене.

Біт СМРІЕ (*Compare Interrupt Enable*) - дозвіл переривання захоплення. Цей біт встановлюється/скидається програмно і скидається апаратно після сигналу RESET. Якщо біт дорівнює 0, то OVF переривання заборонено, якщо – 1, то OVF переривання дозволено.

### Старший регістр лічильника СNTRH (COUNTER REGISTER HIGH)

Регістр допускає тільки читання. Значення скидання: 0000 0000.

Формат регістра CNTRH подано на рис.4.4.

| 0 | 0 | 0 | 0 | CNTR | CNTR | CNTR | CNTR |
|---|---|---|---|------|------|------|------|
|   |   |   |   | 11   | 10   | 9    | 8    |

| D 4.4        | Ŧ      | •        | OUTDII  |
|--------------|--------|----------|---------|
| Pucyhok $44$ | Оормат | регістра | CNIRH   |
| I HOYHOR I.I | Topman | periorpu | CIVITAL |

**Молодший регістр лічильника CNTRL** (COUNTER REGISTER LOW). Регістр допускає тільки читання. Значення скидання: 0000 0000. Формат регістра **CNTRL** подано на рис.4.5.

| 1         |           |           |           |        |        |           |           |
|-----------|-----------|-----------|-----------|--------|--------|-----------|-----------|
| CNTR<br>7 | CNTR<br>6 | CNTR<br>5 | CNTR<br>4 | CNTR 3 | CNTR 2 | CNTR<br>1 | CNTR<br>0 |



0

Біти CNTR [11:0] (*Counter Value*) – значення лічильника. Лічильник інкрементується з кожним тактовим імпульсрм, як тільки генератор лічильника вибраний (див. табл. 4.32). Для зчитування значення лічильника використовують дві послідовні операції читання. При переповненні лічильника в нього заноситься значення АТR регістра.

**Автоперезаватажувальний регістр ATRH** (*AUTORELOAD REGISTER HIGH*) Регістр допускає читання та запис. Значення скидання: 0000 0000. Формат регістра ATRH подано на рис.4.6.

Автоперезаватажувальний регістр ATRL (*AUTORELOAD REGISTER LOW*) Регістр допускає читання та запис. Значення скидання: 0000 0000. Формат регістра ATRL подано на рис.4.7.

|   | 15 | 1 |   |           |           |          | 8        |
|---|----|---|---|-----------|-----------|----------|----------|
| 0 | 0  | 0 | 0 | ATR<br>11 | ATR<br>10 | ATR<br>9 | ATR<br>8 |

Рисунок 4.6. Формат регістра ATRH

|     | 7   |     |     |     |     |     | 0   |
|-----|-----|-----|-----|-----|-----|-----|-----|
| ATR |
| 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |

Рисунок 4.7. Формат регістра ATRL

Біти ATR [11:0] (*Autoreload Register*) – значення автоперезаватажувального регістру. Значення ATR автоматично завантажується в інкрементуючий лічильник CNTR при його переповненні OVF. В режимі ШІМ значення регістра ATR використовується для завдання частоти вихідного сигналу з ШІМ (див. (4.1)).

**Регістр керування виводом РWM PWMCR (**PWM OUTPUT CONTROL REGISTER)

Регістр допускає читання та запис. Значення скидання: 0000 0000. Формат регістра PWMCR подано на рис.4.8.



Рисунок 4.8 Формат регістра PWMCR

Біти ОЕ [3:0] (*PWMx output enable*) – дозвіл виводу PWMx - встановлюються і скидаються програмно, а так же скидаються апаратно після сигналу RESET. Якщо біт дорівнює 0, то вивід PWM заборонено, якщо – 1, то дозволено.

**РWMx perictp керування/стану PWMx PWMxCSR (**CONTROL STATUS REGISTER)

Регістр допускає читання та запис. Значення скидання: 0000 0000. Формат регістра **PWMxCSR** подано на рис.4.9.



Рисунок 4.9 Формат регістра PWMxCSR

Біт OPx PWMx (*PWMx Output Polarity*) визначає полярність вихідного сигналу.

Біт **CMPFx** (PWMx *Compare Flag*). Цей біт встановлюється апаратно і скидається програмно при читанні PWMxCSR регістра. Він дорівнює 1, якщо що значення інкрементуючого лічильника співпадає із значенням в регістрі DCRx.

Perictp керування зупинкою BREAKCR (BREAK CONTROL REGISTER)

Регістр допускає читання та запис. Значення скидання: 0000 0000.

Формат регістра **BREAKCR** подано на рис.4.10.

| _ | 7 |    |      |      |      |      | 0    |
|---|---|----|------|------|------|------|------|
| 0 | 0 | BA | BPEN | PWM3 | PWM2 | PWM1 | PWM0 |

Рисунок 4.10. Формат регістра ВREAKCR

На рис. 4.10 позначено:

Біт BA (Break Active) - зупинка дозволена. Цей біт встановлюється/скидається програмно, скидається апаратно після сигналу RESET і встановлюється апаратно, коли на виводі BREAK присутній нульовий рівень сигналу. Дію біта BA див. також на рис. 4.1.

Біт BPEN (*Break Pin Enable*) — дозвіл виводу BREAK. Цей біт встановлюється/скидається програмно і скидається апаратно після сигналу RESET. Якщо біт дорівнює 0, то вивід BREAK заборонено, якщо – 1, то дозволено.

Біти PWM [3:0] (*Break Pattern*) – BREAK шаблон. Ці біти встановлюються/скидаються програмно і скидаються апаратно після сигналу RESET. Вони використовуються для переводу 4-х PWMx вихідних сигналів в стабільний стан, коли функція BREAK активна.

# Старший PWMx perictp робочого циклу PWMx DCRxH (DUTY CYCLE REGISTER HIGH)

Регістр допускає читання та запис. Значення скидання: 0000 0000. Формат регістра DCRxH подано на рис.4.11.

| _ | 15 |   |   |   |       |       |      | 8    |
|---|----|---|---|---|-------|-------|------|------|
|   | 0  | 0 | 0 | 0 | DCR11 | DCR10 | DCR9 | DCR8 |

Рисунок 4.11 Формат регістра DCRхН

#### Молодший PWMx perictp робочого циклу PWMx DCRxL (DUTY CYCLE REGISTER LOW)

Регістр допускає читання та запис. Значення скидання: 0000 0000. Формат регістра DCRxL подано на рис.4.12

| ,    | 7    |      |      |      |      |      | 0    |
|------|------|------|------|------|------|------|------|
| DCR7 | DCR6 | DCR5 | DCR4 | DCR3 | DCR2 | DCR1 | DCR0 |

Рисунок 4.12. Формат регістра DCRxL

Біти DCR [11:0] *PWMx Duty Cycle Value*) задають значення робочого циклу. У PWM режимі (OEx = 1 в регістрі PWMCR) DCR [11:0] біти визначають скважність вихідного сигналу ШІМ. У режимі порівняння, вони визначають значення, яке порівнюватиметься з 12-бітним значенням інкрементуючого лічильника.

Формування імпульсів з ШІМ пояснюється рис. 4.13.



Рисунок 4.13. Формування ШІМ сигналів

Старший регістр вхідного захоплення ATICRH (INPUT CAPTURE REGISTER HIGH)

Регістр допускає тільки читання. Значення скидання: 0000 0000. Формат регістра ATICRH подано на рис.4.14



Рисунок 4.14 Формат регістра ATICRH

# Молодший регістр вхідного захоплення ATICRL (INPUT CAPTURE REGISTER LOW)

Регістр допускає тільки читання. Значення скидання: 0000 0000. Формат регістра ATICRL подано на рис.4.15.

|      | 7    |      |      |      |      |      | 0    |
|------|------|------|------|------|------|------|------|
| ICR7 | ICR6 | ICR5 | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 |

Рисунок 4.15 Формат регістра ATICRL

Біти ICR [11:0] (*Input Capture Data*) - дані вхідного захоплення. Регістр ATICR містить захоплене значення 12-бітного CNTR регістра, тобто значення на момент появи переднього або заднього фронтів на виводі ATIC. Захоплення може бути виконано тільки тоді, коли прапор ICF скинутий.

**Регістр керування передачею TRANCR (TRANSFER CONTROL REGISTER)** Регістр допускає читання та запис. Значення скидання: 0000 0001. Формат регістра TRANCR подано на рис.4.16.

|   | 7 |   |   |   |   |   | 0    |
|---|---|---|---|---|---|---|------|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | TRAN |

#### Рисунок 4.16 Формат регістра TRANCR

Біт TRAN (*Transfer enable*) - дозвіл перезапису DCRx у тіньовий регістр після переповнення. Цей біт встановлюється/скидається програмно, скидається апаратно після кожної закінченої передачі і встановлюється апаратно після скидання RESET.

#### Приклад виконання лабораторного завдання

Завдання:

За допомогою ШІМ керувати швидкістю обертання ротора двигуна. Початкова швидкість дорівнює 0, швидкість збільшувати рівними кроками після кожного натискання кнопки S4. Після кожного збільшення швидкості вводити затримку в 0,5 сек.

Текст програми: \*\*\*\*\*\*\*\*\*\*\*\* МІСЦЕ ДЛЯ ОГОЛОШЕННЯ ЗМІННИХ \*\*\*\*\*\*\*\*\*\*\* var ds.b 1 ΙΗΙЦΙΑΛΙЗΑЦΙЯ ΠΟΡΤΙΒ ST7 init\_ST7: clr MCCSR ; нормальний режим ret init\_IO: A,#%00001100 1d Настроювання регістру PADDR (вивід РWMO – вивід РА2) ٦d PADDR, A A,#%00001100 ; РА2 та РАЗ в режимі виведення push-pull 1d 1d PAOR, A ret PWM pwm\_init: ; активуємо СМРГ переривання для виводу з bset ATCSR,#0 ; порівнянням (output-compare) ; скидання регістру Output PWM clr PWMCR bset PWMCR, #0 ; вибір вихідного сигналу РШМО ret pwm: A,#0 ٦d ٦d DCROL,A вміст регістру А записуємо в DCROL (нижній регістр таймеру каналу РWMO) вміст змінної "var" записуємо в DCROH (верхній регістр таймеру каналу РWMO) ٦d A,var ;;; sr1 Зсуваємо вліво 4 рази А sr1 А

sr1 А sr1 Α 1d DCR0H,A ; Шпаруватість керується чотирма лівими бітами регістру DCROH (від О до \$FF) fCounterClock = fLTIMER (%00000011) 1ms@8MHz ;bset ATCSR,#3 bset ATCSR,#4 fCounterClock = fCPU (8MHz) A,#1 Завантажуємо число "1" до регістру А 1d 1d TRANCR, A вмикаємо автозаватаження Інвертуємо полярність PWMO ; шляхом встановлення біту О регістру TRANCR в 1 1d A.#%00000001 ; визиваємо переривання СМР для порівняння ٦d PWM0CSR,A ret Підпрограма затримки delay: ; 256\*(256\*(3+4)+3+3+2)+3+4+2+5+4+6 ≈ 0,5 cek push x push y x,#\$ff ٦d dec\_2: ٦d y,#\$ff dec\_1: dec JRNE dec\_1 dec JRNE dec\_2 рор V pop x ret ГОЛОВНА ПРОГРАМА ST7 main: RSP ; Скидаємо покажчик стеку sim Маскуємо переривання call init\_ST7 Ініціалізація ST7 call init\_IO Ініціалізація портів ; Ініціалізація портів ; Ініціалізація таймеру, настройка РWMO (ШІМ) call pwm\_init 1d A, #%0000000 ; Задаємо стартову шпаруватість start: 1d var, A call pwm ; Налаштовуємо РѠМО на нову шпаруватість btjt PADR,#3, start ; Якщо натиснута клавіша S4 не стрибати на start ld\_ A, var A, #%00001111 add Збільшуємо шпаруватість на ОF var, A Зберігаємо нову шпаруватість 1d call delay ; Вводимо затримку на 0,5 сек JP start ; зациклюємо програму JP main

#### Контрольні запитання

- 1. Назвіть призначення та склад ART таймеру
- 2. Як залучити до роботи сторожовий таймер МК ST7?
- 3. Поясніть функцію останову ШІМ сигналів.
- 4. Поясніть принцип формування ШІМ сигналів
- 5. Назвіть призначення та склад LITE таймеру.

## Лабораторна робота №5

### АЦП мікроконтролерів ST7

#### Завдання:

Ініціалізувати АЦП. Забезпечити вимірювання напруги на потенціометрі R20, що підключено до лінії порту PB0. Використовувати виміряне відносне значення напруги у спосіб, вказаний варіанті.

#### Порядок роботи з макетом:

- Увімкнути всі, крім 3-го, перемикачі в блоці перемикачів B1/S4.
- Вимкнути джампери W4 та W7.
- Увімкнути джампери W3, W5 та W4.

| Режим | Опис                                                                           |
|-------|--------------------------------------------------------------------------------|
| 1.    | Виміряне значення напруги пропорційно перерахувати в ціле число від 1 до 8.    |
|       | Засвічувати світлодіод, номер якого відповідає розрахованому числу.            |
| 2.    | Виміряне значення напруги пропорційно перерахувати в ціле число від 1 до 8.    |
|       | Засвічувати всі світлодіоди від першого до світлодіода, номер якого відповідає |
|       | розрахованому числу включно.                                                   |
| 3.    | Забезпечити блимання одного з розрядів дисплею. Кнопкою S5 переміщувати        |
|       | блимання на сусідній розряд праворуч та по колу.                               |
|       | Виміряне значення напруги пропорційно перерахувати в ціле число від 0 до 9.    |
|       | Вивести розраховане число в розряд, що блимає.                                 |
| 4.    | Керувати швидкістю обертання електричного двигуна. Задавати швидкість          |
|       | обертання на основі виміряного значення напруги.                               |
| 5.    | Виміряне значення напруги пропорційно перерахувати в число від 0.0 до 5.0 з    |
|       | точністю до десятих. Вивести розраховане число на світлодіодний дисплей.       |
| 6.    | Вивести на світлодіодний дисплей довільне число. Після натискання кнопки S5    |
|       | почати на одиницю збільшувати число на дисплеї зі швидкістю, що залежить від   |
|       | виміряного значення напруги. Після повторного натискання кнопки В зупинити     |
|       | збільшення числа.                                                              |
| 7.    | Вивести на світлодіодний дисплей довільне число. Після натискання кнопки S5    |
|       | почати на одиницю змінювати число на дисплеї зі швидкістю, що залежить від     |
|       | виміряного значення напруги. Якщо виміряне значення напруги менше від          |
|       | половини максимально можливого значення, то число зменшувати, а якщо           |
|       | більше — збільшувати. Після повторного натискання кнопки В зупинити            |
|       | збільшення числа.                                                              |
| 8.    | Організувати смугу прокрутки послідовності 16-значних цифр. Напрямок           |
|       | прокрутки змінювати кнопкою S5. Швидкість прокрутки залежить від               |
|       | виміряного значення напруги.                                                   |

| № варіанту | Спосіб    |  |  |
|------------|-----------|--|--|
|            | керування |  |  |
| 1.         | 1, 3      |  |  |
| 2.         | 2, 4      |  |  |
| 3.         | 1, 5      |  |  |
| 4.         | 2, 6      |  |  |
| 5.         | 1,7       |  |  |
| 6.         | 2, 8      |  |  |
| 7.         | 1, 3      |  |  |
| 8.         | 2, 4      |  |  |
| 9.         | 1, 5      |  |  |
| 10.        | 2, 6      |  |  |

Таблиця 5.1. Завдання для лабораторної роботи 5

#### Теоретичні відомості

*Аналого-цифровий перетворювач* являє собою семиканальний 10-розрядний АЦП послідовного наближення. Структурна схема АЦП наведена на рис.5.1.



Рисунок 5.1 - Структурна схема АЦП

Схема містить: аналогово-цифровий перетворювач, аналоговий мультиплексор, вхідний підсилювач з регульованим коефіцієнтом підсилення (x1 або x8) та регістри даних ADCDRH, ADCDRL та керування/статусу ADCCSR.

Регістр ADCDRH зберігає старші біти результату аналогового перетворення D[9:2], регістр ADCDRL - два молодших біта D[1:0] та крім того, наступні керуючі біти:

AMPCAL Amplifier Calibration Bit – калібровка підсилювача. При 1 режим калібровки, при цьому вхідна напруга підсилювача встановлюється на нульовому рівні. SLOW Slow mode – повільний режим.

AMPSEL Amplifier Selection Bit – біт виборки підсилювача (вибору коефіціенту підсилення 1 або 8, див. рис. 4.46). При AMPSEL=1 діапазон вхідної напруги становить від 0 до Ucc/8, тобто при Ucc=5 B, від 0 до 430 мВ. При цьому роздільна здатність дорівнює 0,6 мВ (еквівалент 13-го розряду). При AMPSEL=0 діапазон вхідної напруги становить від 0 до Ucc. Біти SLOW і біт SPEED регістру ADCCSR задають частоту роботи АЦП згідно табл.5.3.

| $f_{ADC}$   | SLOW | SPEED |  |  |  |  |  |
|-------------|------|-------|--|--|--|--|--|
| $f_{CPU}/2$ | 0    | 0     |  |  |  |  |  |
| $f_{CPU}$   | 0    | 1     |  |  |  |  |  |
| $f_{CPU}/4$ | 1    | Х     |  |  |  |  |  |

Таблиця 5.3 – Вибор частоти АЦП перетворення

Регістр керування/статусу ADCCSR (див. рис. 3.1) містить наступні біти:

Біт *EOC (End of Conversion)* – встановлюється в 1 по закінченню аналогово-цифрового перетворення

Біт *SPEED (ADC clock selection)* – цей біт сумісно з бітом SLOW задають частоту роботи АЦП згідно табл.5.3.

Біт ADON (A/D Converter on) – запуск АЦП

Біти *CH*[2:0] Channel Selection – задають канал АЦП згідно з табл. 5.4.

| ruomiti 5.1 Bhoip kunung ritti |     |     |     |  |  |
|--------------------------------|-----|-----|-----|--|--|
| Вивід <sup>*</sup> МК          | CH2 | CH1 | CH0 |  |  |
| AIN0                           | 0   | 0   | 0   |  |  |
| AIN1                           | 0   | 0   | 1   |  |  |
| AIN2                           | 0   | 1   | 0   |  |  |
| AIN3                           | 0   | 1   | 1   |  |  |
| AIN4                           | 1   | 0   | 0   |  |  |
| AIN5                           | 1   | 0   | 1   |  |  |
| AIN6                           | 1   | 1   | 0   |  |  |

*Приклад 5.1.* Написати програму для ініціалізації АЦП для введення аналогового сигналу по лінії РВ0

Для цього необхідно лінію порта PB0 запрограмувати для введення у високоімпеденсний стан (00) та обрати канал АЦП (000):

Init\_ADC:

| call | init_portB   | ;ініціалізація порту В                   |
|------|--------------|------------------------------------------|
| ld   | A,#%00000000 | ; Вибір AIN0 (РВ0) скиданням СН0=СН1=СН2 |
| ld   | ADCCSR,A     |                                          |
| ret  |              |                                          |

Приклад 5.2 Введення даних з АЦП (8-розрядного)

| -    |      |
|------|------|
| Dood | ADC. |
| Reau | ADC. |

| _     | bset | ADCCSR,#5 | ; Запуск АЦП                              |
|-------|------|-----------|-------------------------------------------|
| cont: |      |           | ;Очікування закінчення перетворення       |
|       | ld   | A,ADCCSR  |                                           |
|       | and  | A,#\$80   |                                           |
|       | jreq | cont      |                                           |
|       | bres | ADCCSR,#5 | ; Зупинка АЦП встановленням біта 5 (ADON) |
|       |      |           | perictpa ADCCSR                           |

| ld  | A,ADCDRH | ; Зчитування молодшого байту результату АЦП |
|-----|----------|---------------------------------------------|
| ld  | var,A    | ; запис у комірку var                       |
| ret |          |                                             |

#### Приклад виконання лабораторного завдання

Завдання:

Вимірювати напругу на потенціометрі R20. На основі виміряного значення напруги змінювати яскравість світлодіода №4. Керувати яскравістю за допомогою ШІМ.

Текст програми: МІСЦЕ ДЛЯ ОГОЛОШЕННЯ ЗМІННИХ var ds.b 1 ΙΗΙЦΙΑΛΙЗΑЦΙЯ ΠΟΡΤΙΒ ST7 init\_ST7: clr ; нормальний режим MCCSR ret init\_IO: A,#%00010000 ٦d Настроювання регістру PADDR (вивід РWM2 — вивід РА4, світлодіод №4) ٦d PADDR, A A,#%00010000 ٦d ; РА4 в режимі виведення push-pull PÁOR, A 1d ٦d PBDDR,A PBO в режимі floating input ; 1d PBOR,A ret **PWM** pwm\_init: bset ATCSR,#0 активуємо CMPF переривання для виводу з порівнянням (output-compare) скидання регістру Output PWM clr PWMCR bset PWMCR, #4 ; вибір вихідного сигналу РШМ2 ret pwm: ٦d A,#0 ; вміст регістру А записуємо в DCR2L ; (нижній регістр таймеру каналу PWM2) ; вміст змінної "var" записуємо в DCR2H ; (верхній регістр таймеру каналу PWM2) ٦d DCR2L,A ٦d A,var Зсуваємо вліво 4 рази sr1 Α srl А sr1 А srl Α ٦d DCR2H,A ; Шпаруватість керується чотирма лівими бітами ; pericтpy DCR2H (від О до \$FF) fCounterClock = fLTIMER (%00000011) 1ms@8MHz ;bsetATCSR,#3 ; bset ATCSR,#4 fCounterClock = fCPU (8MHz) ٦d A,#1 ; Завантажуємо число "1" до регістру А

٦d TRANCR, A інвертуємо полярність PWM2 шляхом встановлення біту О регістру TRANCR в 1 ٦d A,#%0000001 ; визиваємо переривання СМР для порівняння 1d PWM2CSR,A ret ПІДПРОГРАМИ РОБОТИ З АЦП - Підпрограма ініціалізації АЦП та налаштування регістру ADCSR select\_CH: Id А,#%00000000 ; Вибір АІNO (РВО) скиданням СНО=СН1=СН2 Цей канал обрано тому, що до нього (РВО) під'єднано потенціометр Вивід РВО повинен бути налаштований на високоімпедансний стан (floating input) ; завантажуємо %00000000 в регістр ٦d ADCCSR,A ret - Запуск процесу вимірювання аналогового сигналу з потенціометра process\_adc: bset ADCCSR,#5 Один раз запустити аналогово-цифрове перетворення cont: завантажити вміст ADCCSR до регістру "А" оператор "And" дозволяє перевірити: Чи зацінчився процес перетворення? 1d A, ADCCSR A,#\$80 and jreq cont Якщо ні, то це означає, що біт «ОЕС» ще ; не дорівнює 1 ; Біт №7 регістру ADCCSR має назву "ОЕС" bres ADCCSR,#5 Зупинити АЦП шляхом встановлення біту №5 ; регістру ADCCSR в 1 ; Біт №5 регістру ADCCSR має назву "ADON" ; Починаємо читати результат аналогово-цифрового перетворення Завантажуємо вміст старшого (верхнього) регістру АЦП до регістру А ٦d A, ADCDRH "var" – це заздалегідь оголошена змінна, що зберігається в RAMO ld var,A ; змінна "var" тепер містить результат аналогово-цифрового перетворення ret **ГОЛОВНА ПРОГРАМА ST7** main: RSP ; Скидаємо покажчик стеку sim Маскуємо переривання call init\_ST7 Ініціалізація ST7 call init\_IO Ініціалізація портів ; Ініціалізація таймеру, настройка РWM2 (ШІМ) ; Обираємо канал АЦП №0 call pwm\_init call select\_CH start: call process\_adc ; Вимірюємо напругу на потенціометрі R20 call pwm ; Налаштовуємо РWM2 на нову шпаруватість ; зациклюємо програму JP start JP main Контрольні запитання

- 1. Дайте характеристику АЦП МК ST7.
- 2. Який принцип перетворення реалізовано в АЦП МК ST7
- 3. Скільки входів має АЦП? Як вони обираються?
- 4. Поясніть призначення підсилювача з регульованим коефіцієнтом підсилення?
- 5. Як визначається роздільна здатність АЦП у різних режимах підсилення?

## Додаток А

### Відлагодження програм у середовище ST7 Visual Develop

Середовище ST7 Visual Develop використовується для віртуальної відладки програм для мікроконтролерів ST7. Відладка відбувається з використанням спеціального емулятора мікро контролера.

#### Необхідні кроки підготовки до роботи:

- 1. Створити структури каталогів для зберігання файлів проектів.
- 2. Встановити програмне забезпечення STVD7.
- 3. Під'єднати та перевірити інтерфейс inDART-STX.
- 4. Запустити середовище STVD7 та створити новий робочий простір.
- 5. Створити новий проект.
- 6. Додати файли до проекту.

Детально опишемо кожен із кроків.

#### Створення структури каталогів

Рекомендується зберігати файли лабораторних робіт таким чином, щоби файли кожної з робіт знаходилися в окремих каталогах. Приклад наведено нижче:

| C:\MCU_ST7Lite2\ | LabWork_1\<br>LabWork_2\ |
|------------------|--------------------------|
|                  | …<br>LabWork_N∖          |

#### Встановлення програмного забезпечення

Перед початком робіт необхідно встановіти програмне забезпечення:

- Першим потрібно встановити пакет: "st7\_toolset.exe"
- Другим потрібно встановити пакет: "st7 2006.exe"

### Під'єднання та перевірка inDART-STX

Перед початком робіт необхідно під'єднати та перевірити працездатність inDART-STX за допомогою *inDART-STX Diagnostic Test* (плата ST7 на цьому етапі повинна бути від'єднаною)

| /arning                                                                                                                                                            | OK   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| This diagnostic test performs a general hardware<br>check and a foolproof test of all of the ISP<br>connector's I/O lines.                                         | Exit |
| Before to start the test, make sure that inDART-STX is<br>connected to the PC (via the USB connector) and the<br>target system is NOT connected to the instrument. |      |
| Press OK when ready.                                                                                                                                               |      |

Вікно програми inDART-STX Diagnostic Test

### Створення нового робочого простору

Для створення нового робочого простору оберіть з меню пункт File->New Workspace...

| 🖴 SofTec ST¥D7                                                     |                            |                                                                     |
|--------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------|
| File Edit View Project                                             | <u>Build</u> <u>D</u> ebug | Debug i <u>n</u> strument <u>I</u> ools <u>W</u> indow <u>H</u> elp |
| New Workspace                                                      |                            |                                                                     |
| ⊆lose Workspace                                                    |                            |                                                                     |
| Sa <u>v</u> e Workspace<br>Save Wor <u>k</u> space As              |                            |                                                                     |
| New <u>T</u> ext File                                              | Ctrl+N                     |                                                                     |
| Close Text File                                                    | Ctrl+F4                    |                                                                     |
| Save Text File<br>Save Text File As<br>Save <u>A</u> ll Text Files | Ctrl+5                     |                                                                     |
| Print Setup<br>Print                                               | Ctrl+P                     |                                                                     |
| Recent Workspaces<br>Recent Text Files                             | ۰<br>۲                     |                                                                     |
| E <u>x</u> it                                                      | Alt+F4                     |                                                                     |
| ndo E Build (                                                      | Tools 入 Find in            | -<br>I Files 1  Find in Files 2  Debug  Console /                   |
| reate a new workspace                                              |                            | Ln, Col MODIFIED READ CAP NUM SCRE OVR Stop Ready                   |

Введіть назву на оберіть каталог для зберігання файлів робочого простору



#### Створення нового проекту

Введіть назву на оберіть каталог для зберігання файлів проекту

| New Project    | ×                                       |
|----------------|-----------------------------------------|
|                | Project filename<br>ex_1                |
| THE ALLER AND  | D:\ST7 UNIVERSITY PROGRAM\              |
|                | Toolchain<br>ST7 Assembler Linker       |
| Kal Morth Star | Taalahain aad                           |
| A CONTRACTOR   | C:\Program Files\STMicroelectronics\st7 |
|                | <u>D</u> K <u>C</u> ancel               |

У якості цільового мікроконтролера оберіть ST7FLite29:

| MCU Selection                                                                                                                                                                            |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Filter<br>Show MCUs containing                                                                                                                                                           |                                                             |
| MCUs<br>DVD3<br>L6315_10_RAM<br>L6315_10_ROM<br>ST72101G1<br>ST72104G1<br>ST72104G2<br>ST72121J2<br>ST72121J2<br>ST72121J4<br>ST72124J2<br>ST72141<br>ST722141<br>ST72212G2<br>ST72213G1 | Emu3<br>Dvp3<br>Icd<br>Sim<br>Emu28 (Hds2)<br>Dvp<br>Select |
| Selected MCU                                                                                                                                                                             | OK Cancel                                                   |

Запишіть файли робочого простору та проекту у відповідному завчасно створеному каталозі.

| Open                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 7 🔛 |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
| Look as 🙆 and L                                                                | Lineit, Bra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · • • •        |     |
| Darminez h<br>Barminez a<br>Propřesz a<br>Magnesz a<br>Magnesz a<br>Stranaczaw | d Miles people<br>d Miles people<br>d Miles rep.<br>d |                |     |
| Thereine Filmer                                                                | Leen" "ST7NAs2 een"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dav            |     |
| Files of type   Scale                                                          | er/include-Files (* 117-1488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TownstantesCee | -   |

Оберіть у меню *Project->Settings*... (закладка *MCU Selection*), мікро контролер, для якого планується написати програму.

| ettings for: Debug                      | General Debug MCU Selection ST7 ASM Pre-Link S1 |
|-----------------------------------------|-------------------------------------------------|
| ⊡ ∰ pwm_4n<br>⊕ Source Files            | Show MCUs containing                            |
| Include Files     External Dependencies | HCI.                                            |
|                                         |                                                 |
|                                         | ST7FLIT19BY0<br>ST7FLIT19BY1                    |
|                                         | ST7FLITE02                                      |
|                                         | ST7FLITE05                                      |
|                                         | ST7FLITE10<br>ST7FLITE15                        |
|                                         | ST7FLITE19<br>ST7FLITE20                        |
|                                         | ST7FLITE25                                      |
|                                         | ST7FLITE 30 Select                              |
|                                         | Selected MCU                                    |
|                                         | ST7FLITE29                                      |
|                                         |                                                 |
|                                         |                                                 |

Для роботи з емулятором мікроконтролера необхідно обрати у якості "Цілі" (*Target*) емулятор (*Sim*) в меню *Debug Instruments -> Target settings*...:

| Debug Instrument Settings                                                                         |                    | × |
|---------------------------------------------------------------------------------------------------|--------------------|---|
| Target<br>Debug Instrument Selection:<br>Select the Target you want<br>to use for debug session . | Sim                |   |
| Target Port Selection:<br>Select the connection port for<br>the Target selected above.            | Add Bemove         |   |
|                                                                                                   | ОК Отмена Применит | ь |

#### Додавання файлів до проекту

Перед початком розробки необхідно спочатку скопіювати до папки з проектом та додати файли до проекту в STVD7 (можна також використати шаблон робочого простору):

- mapping.asm копіювати не треба, створюється автоматично
- st7lite.asm
- max7219.asm для роботи з індикатором по SPI
- template.asm основний файл проекту, заготовка (змінити ім'я на відповідне лабораторній роботі)

Заголовочні файли:

- st7lite.inc
- max7219.inc

| 🛎 SofTec STVD7 - pwm_4.stw - [ex_pwm.asm]         | <                                                 |
|---------------------------------------------------|---------------------------------------------------|
| 🖆 Eile Edit View Project Build Debug Debug instru | rument <u>T</u> ools <u>W</u> indow <u>H</u> elp  |
| 12 ≤ 1 🖬 🖨   14 🖄 ? 13 13                         | -> -> -=                                          |
| Workspace - ×                                     |                                                   |
| pwm_4.stw<br>⊡∰ pwm_4n                            |                                                   |
| Source Files                                      | 3 ; · · · · · · · · · · · · · · · · · ·           |
| ex_pwm.asm                                        | 4 ; TITLE:                                        |
| max7219.asm                                       | 5 ; AUTHOR:                                       |
| st7lite2.asm                                      | 6 ; DESCRIPTION:                                  |
| 🖻 — 🔄 Include Files                               | ***************************************           |
| max7219.inc                                       | 8                                                 |
| st7lite2.inc                                      | 9 TITLE "ex spi.ASM"                              |
| External Dependencies                             | 10                                                |
|                                                   | 11 MOTOROLA                                       |
|                                                   | 12                                                |
| Workspace                                         | ex_pwm.asm                                        |
|                                                   |                                                   |
|                                                   |                                                   |
|                                                   |                                                   |
|                                                   |                                                   |
|                                                   |                                                   |
|                                                   | the the balance of the second of                  |
| Olia Plank Build V 100ls V Find in Files 1 V Find |                                                   |
| For Help, press F1                                | Ln, Col MODIFIED READ CAP NUM SCRL OVR Stop Ready |

Вікно програми STVD7. Перелік файлів проекту зверху зліва.

### Відладка проекту

Для увімкнення відладки потрібно натиснути відповідну кнопку на панелі інструментів (див. рис. нижче).

Включення відладки

| & ST7FLITE29 Simulator - pwm_            | _4.stw* - [Debug] - pv | /m_4n.s19 - [ex_pwm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .asm]        |              | _            |                 | _/                                                                                                             |                 |                             | _ 8 ×   |    |
|------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|-----------------|----------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------|---------|----|
| Eile Edit View Project Build             | Debug Debug instrume   | nt <u>T</u> ools <u>W</u> indow <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >            |              |              |                 |                                                                                                                |                 |                             | - 8 ×   |    |
| 📻 🍓 🚘 🖬 🐼 🚳 👘                            | HA 🔂 🦹 🗐 🕄 🕄           | 3 0 5 5 E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>A</b>     | a 📕 🖬        | - 24 77      | 1 3 🙆 /🗇        | 1. 在我国)                                                                                                        | 0 0             | 0, 0, 0                     | 8 01 9  | i  |
| Workspace x                              | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | Disassembly                                                                                                    |                 |                             | ×       |    |
|                                          | 245 ;*****             | * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ****         | *****        | *****        | ***             | ex pum.a                                                                                                       | sm:254          | JRNE de                     | C 2 -   |    |
|                                          | *****                  | * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |              |                 | 0xe106 <                                                                                                       | dec 2+1         |                             | > 1     |    |
| - En Source Files                        | 246 delay:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | ex pwm.a                                                                                                       | sm:256          | ld x,de                     | lay     |    |
| +1 manning asm                           | 247 push               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |              |                 | 0xe108 <                                                                                                       | dec 2+3         |                             | >1      |    |
| +1 ex pwm.asm                            | 248 push               | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |              |                 | ex_pwm.a                                                                                                       | sm:257          | dec y                       |         |    |
| +1 max7219.asn                           | 249                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | Oxe10a <                                                                                                       | dec_2+5         |                             | > 1     |    |
| +1 st7lite2.asm                          | 250 ld x               | delay 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |              |              |                 | ex_pwm.a                                                                                                       | sm:258          | JRNE de                     | c_2     |    |
| - 🦮 Include Files                        | 251 1                  | and the particular par |              |              |              |                 | Oxe10c <                                                                                                       | dec_2+7         |                             | > 1     |    |
| 1 max7219.inc                            | 252 dec_2:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | ex_pwm.a                                                                                                       | sm:260          | pop y                       |         |    |
| iii st7lite2.inc                         | 253 dec                | ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |              |                 | OxelOe <                                                                                                       | dec_2+9         |                             | > 1     |    |
| External Depender                        | 254 JRNE               | dec_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |              |                 | ex_pwm.a                                                                                                       | om:261          | pop x                       |         |    |
| _                                        | 255                    | V 21 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |              |              |                 | 0xe110 <                                                                                                       | dec_2+11        |                             | > 1     |    |
|                                          | 256 Id x               | delay_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |              |              |                 | ex_pwm.a                                                                                                       | sm:262          | ret                         | E       |    |
|                                          | 257 dec                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |              |                 | Oxe111 <                                                                                                       | dec_2+12        |                             | > 1     |    |
|                                          | 256 JRNL               | dec_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |              |                 | ex_pwm.a                                                                                                       | sm:271          | RSP                         |         |    |
|                                          | 259                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | Suxell2 <                                                                                                      | main            |                             |         |    |
| I II                                     | 261 000                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | ex_pwm.a                                                                                                       | Sm: 272         | call in                     | 10_5    |    |
|                                          | 262 707                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | Uxerrs <                                                                                                       | main+1          | coll in                     | de T    |    |
| I II                                     | 2.63                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | Ovel16                                                                                                         | main+4          | Carr In                     | 10-1    |    |
| I II                                     | 264 :*****             | ************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ******       | *****        | *****        | *******         | ex num e                                                                                                       | gm • 274        | cell in                     | it s    |    |
|                                          | *****                  | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |              |                 | Ovel19                                                                                                         | main+7          | Curr In                     | 200     |    |
|                                          | 265 ;                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | ex num a                                                                                                       | sm:275          | call MA                     | X721    |    |
|                                          | 266 ; MAT              | I PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              |              |                 | Oxellc <                                                                                                       | main+10         | ourr m                      | > 1 - 1 |    |
|                                          | 267 ;                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | ex num.a                                                                                                       | sm:276          | call MA                     | X721    |    |
|                                          | 268 ;*****             | *************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *******      | *****        | ******       | ******          | Oxellf <                                                                                                       | main+13         | ourr m                      | > 1     |    |
|                                          | *****                  | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |              |                 | ex pum.a                                                                                                       | sm:277          | call pu                     | min     |    |
|                                          | 1000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 | 0xe122 <                                                                                                       | main+16         |                             | > 1-1   |    |
| ( Workspace                              | ex pwm.asm             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 |                                                                                                                |                 |                             |         |    |
|                                          |                        | (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |              |                 | LI I I                                                                                                         |                 |                             |         | į. |
| <ul> <li>Peripheral registers</li> </ul> | √alue                  | ▲ ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              |              |                 | 1                                                                                                              | × *             | * Applica                   | atior - |    |
| ST7FLITE29                               |                        | Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Counter      | Stacks       |              | Index registers |                                                                                                                | Fost            | ::8MHz                      |         |    |
| Port A                                   |                        | PC 0x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e112         | SP 0         | <01ff        | × 0×00          | Y 0x00                                                                                                         | INT             | ERRUPT:CO                   | ONCUF   |    |
| [0x0000] PADR 0                          | Dxff                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |                 |                                                                                                                | UAT             | CHDOG:SO                    | FTWAF   |    |
| [0x0001] PADD 0                          | 0x00                   | Accumul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ator Conc    | lition Flags |              |                 |                                                                                                                | WDG             | HALT: RES                   | SET     |    |
| [0x0002] PAOR 0                          | 0x40                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            |              |              |                 |                                                                                                                |                 |                             |         |    |
| 5 + Port B                               |                        | A UXU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U CC         | Uxea         | 4            | HMIN            | IF Z □ C                                                                                                       |                 | 1                           |         |    |
| + Lite Timer                             |                        | Ě .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11           | 1            |              |                 |                                                                                                                |                 |                             |         |    |
| A + Auto Beload Timer                    |                        | ▼ 5 Concusten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IT Nested IT | Time Inst    | ruction coun | iter            |                                                                                                                |                 | [ ₱ ] ₱I [\ Bui             |         |    |
| or Help, press F1                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | ļin, C       | નં (ભાગવ        | enne prese local <b>N</b> L                                                                                    | IM State (1996) | Stop                        | Ready   |    |
|                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - And        | C. ST. CTURS |              | 1 con commence  | and a standard and a |                 | A REAL PROPERTY AND ADDRESS | -       |    |

Вікно програми STVD7. Режим відладки.

Для виконання наступного кроку програми натискайте кнопку F10 на клавіатурі.

### Апаратна відладка програми

# Середовище SofTec STVD7 повністю повторює інтерфейс від ST7 Visual Develop (STVD7)

- Файли робочого простору цих пакетів сумісні.
- Призначення середовища апаратна відладка програми.

#### Увага!!! Перед роботою з SofTec STVD7:

В програмній середі STVD7 for InDart-STX натиснути піктограму *Start Debugging*. Потім в меню *Debug Instrument* пункт *MCU Configuration*, далі пункт *Set Option Bytes*.

Для запобігання збоям зв'язку мікроконтролера з відладчиком пункт байта опцій *RC* Oscillator Selection повинен бути встановленим у стан <u>*RC* Oscillator On</u> (див. рис. нижче).

| Edit Option Bytes                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |   | ×            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---|--------------|
| Edit Option Bytes<br>[FMP_W] - FLASH Write Protection:<br>[FMP_R] - Read-Out Protection:<br>[SEC] - Sector 0 Size Definition:<br>[OSCRANGE] - Oscillator Range Selection:<br>[WDG_HALT] - Watchdog and Halt Mode:<br>[WDG_SW] - Watchdog Activation:<br>[LVD] - Low Voltage Detection Selection:<br>[OSC] - RC Oscillator Selection: | Write Protection Off<br>Read-Out Protection Off<br>4K<br>LP: 1-2MHz<br>No Reset in HALT<br>Software<br>LVD Off<br>RC Oscillator Off |   | OK<br>Cancel |
| [PLL320FF] - 32MHz PLL:                                                                                                                                                                                                                                                                                                              | PLL32 Disabled (by-passed)                                                                                                          | _ |              |
| [PLLx4x8] - PLL Factor Selection:                                                                                                                                                                                                                                                                                                    | PLL Disabled (by-passed) PLLx4                                                                                                      | - |              |
|                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |   |              |

Якщо цього не зробити, то при вході до режиму відладки автоматично програмується невірний байт опцій, який вимикає вмонтований RC генератор. Мікроконтролер втрачає джерело тактових імпульсів і зв'язок з ним стає неможливим (див. рис. нижче):

| SofTe | c STVD7                                                                                                                                                         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8     | error: gdi-error: communication error between the instrument and the target device. for a list of possible causes of this error, please read the user's manual. |
|       | ОК                                                                                                                                                              |

Для відновлення нормальної роботи необхідно перепрограмувати байт опцій, що вже неможливо без зовнішнього джерела тактових імпульсів.

#### Вибір inDART-STX

Для роботи з мікроконтролером необхідно обрати у якості "Цілі" (*Target*) інтерфейс *inDART-STX* в меню *Debug Instruments -> Target settings*...(див. рис. нижче):

| arget                                                    | ~                  |
|----------------------------------------------------------|--------------------|
| Select the Target you want<br>to use for debug session . | inDART-STX         |
| Target Port Selection:                                   |                    |
| Select the connection port fo                            | r usb://hti1       |
| the Target selected above.                               | 1                  |
| the Target selected above.                               | Add <u>R</u> emove |

Тоді:

- Для роботи з мікроконтролером буде використовуватися інтерфейс STX
- Перетворення інтерфейсу USB -> STX буде виконуватися за допомогою адаптера inDART-STX (перед роботою з мікроконтролером не забувайте перевіряти байт опцій)

#### Відладка у SofTec STVD7

Відладка в середовищі SofTec STVD7 виконується ідентично до відладки у ST7 Visual Develop.

## **<u>II3 DataBlaze Programmer</u>**

**DataBlaze Programmer** – це програмне забезпечення для роботи з пам'ятю програм та даних мікроконтролерів ST.

Можливості програми: установка байтів опцій, стирання, перевірка стирання, запис, читання, перевірка запису пам'яті програм та даних.

#### <u>УВАГА! Перед роботою з DataBlaze Programmer перевірте байт опцій.</u> <u>Є ризик виводу з ладу мікроконтролера!</u>



Інтерфейс DataBlaze Programmer

#### Вибір моделі мікроконтролера

Натисніть кнопку Select Device



#### Завантаження відкомпільованої програми

Оберіть пункт меню *File -> Load -> Code Buffer* 



#### Програмування/запис мікроконтролера

(не забувайте перевіряти байт опцій)

| Program                                                                                                                         | ×             |
|---------------------------------------------------------------------------------------------------------------------------------|---------------|
| Steps<br>Program Code                                                                                                           | <u>S</u> tart |
| <ul> <li>Verify Lode</li> <li>Program Data</li> <li>Verify Data</li> <li>✓ Program Options</li> <li>✓ Verify Options</li> </ul> | <u>E</u> xit  |

### Робота мікроконтролера в автономному режимі

- Для роботи мікроконтролера в автономному режимі необхідно скомпілювати програму у середовищі SofTec STVD7 або ST7 Visual Develop з настройками *Release* замість *Debug* (меню *Build -> Configurations...*).
- Запрограмувати мікроконтролер у DataBlaze Programmer.
- Від'єднати плату inDART-STX від плати мікроконтролера.
- Перезавантажити мікроконтролер.

## Додаток Б

### Лабораторний стенд ST7/ST5

Конфігурація лабораторного стенду наведено на рис. Б.1



Рис. Б.1.

Структурна блок-схема стенду наведено на рис Б.2



Рис. Б.2.



Рис.Б.3

Виводи введення/виведення і з'єднувальні інтерфейси наведено в табл. Б1.

| тиолиця вт. в          | пводп введенны впведенны г 5 с | ДПУВШИ | пперфе |
|------------------------|--------------------------------|--------|--------|
| Назва штиревого виводу | Підключений зовнішній          | N⁰     | N⁰     |
| (Pin)                  | пристрій                       | виводу | виводу |
|                        |                                | ST7    | J2/JP3 |
| PA0/LTIC               | LED1                           | 13     | 6      |
| PA1/ATIC               | LED2                           | 12     | 7      |
| PA2/ATPWM0             | Двигун                         | 11     | 4      |
| PA3/ATPWM1             | LED3 / Зумер / Кнопка 1        | 10     | 13     |
| PA4/ATPWM2             | LED4                           | 9      | 14     |
| PA5/ATPWM3/ICCDATA     | Зарезервовано для ISP          | 8      | 15     |
| PA6/MCO/ICCCLK/BREAK   | Зарезервовано для ISP          | 7      | 16     |
| PA7                    | LED5                           | 6      | 17     |
| PB0/ <u>SS</u> /AIN0   | Потенціометр / Кнопка 2 / In1  | 19     | 5      |
| PB1/SCK/AIN1           | Відображае сигнал              | 20     | 3      |
|                        | управління SPI : CKSPI         |        |        |
| PB2/MISO/AIN2          | Відображае сигнал              | 1      | 1      |
|                        | управління: завантаження       |        |        |
|                        | даних у Max7219                |        |        |
| PB3/MOSI/AIN3          | Відображае сигнал              | 2      | 2      |
|                        | управління SPI : MOSI          |        |        |
| PB4/CLKIN/AIN4         | LED6 / In2                     | 3      | 10     |
| PB5/AIN5               | LED7                           | 4      | 11     |
| PB6/AIN6               | LED8                           | 5      | 12     |
| Reset                  | Кнопка СКИДАННЯ                | 18     |        |

Таблиця Б1. Виводи введення/виведення і з`єднувальні інтерфейси

На рис. Б.4. наведено принципову схему стенда



## Додаток В

### Система команд мікроконтролерів ST7FLITE

1) Інструкції очистки (clean) та завантаження (load) регістрів

| CLR Clear : | очистити регістр                   |
|-------------|------------------------------------|
| LD Load :   | завантажити значення у pericтp/td> |

2)Інструкції арифметичних операцій (arithmetic instructions):

| ADC Addition with Carry:    | додавання із перенесенням  |
|-----------------------------|----------------------------|
| ADD Addition :              | додавання без перенесення  |
| MUL Multiply :              | множення                   |
| SBC Subtraction with Carry: | віднімання із запозиченням |
| SUB Subtraction :           | віднімання без запозичення |

3)Інструкції для роботи зі стеком (stack operations):

| POP from Stack           | отримати дані зі стеку      |                            |       |
|--------------------------|-----------------------------|----------------------------|-------|
| PUSH Push into the Stack | помістити дані у стек       |                            |       |
| RSP Reset Stack Pointer  | скинути<br>(встановити у по | вказівник<br>оложення #FF) | стеку |

4)Інструкції зсуву (shift and rotate instructions):

| RLC Rotate Left through Carry  | зсув ліворуч через перенесення  |        |    |         |         |
|--------------------------------|---------------------------------|--------|----|---------|---------|
| RRC Rotate Right through Carry | зсув праворуч через перенесення |        |    |         |         |
| SLA/SLL Shift Left Arithmetic  | зсув ліворуч, арифметичний      |        |    |         |         |
| SRA Shift Right Arithmetic     | зсув праворуч, арифметичний     |        |    |         |         |
| SRL Shift Right Logical        | зсув праворуч, логічний         |        |    |         |         |
| SWAP Nibbles                   | обміняти о                      | старші | та | молодші | тетради |

5)Інструкції інкременту та декременту (Increment/Decrement Instructions):

| DEC Decrement | зменшити на одиницю  |
|---------------|----------------------|
| INC Increment | збільшити на одиницю |

6)Інструкції порівняння та перевірки (Compare and Test Instructions):

| BCP Logical Bit Compare       | логічне бітове порівняння                   |
|-------------------------------|---------------------------------------------|
| CP Compare                    | порівняння                                  |
| TNZ Test for Negative or Zero | перевірка знаку змінної та рівність її нулю |

7) Логічні операції (Logical Operations):

| AND Logical And          | логічне I                                |
|--------------------------|------------------------------------------|
| CPL Logical 1-Complement | інверсія (логічне доповнення до одиниці) |
| NEG Negate               | додатковий код числа (зміна знаку)       |
| OR Logical Or            | логічне АБО                              |
| XOR Logical Exclusive Or | виключальне АБО                          |

8)Інструкції безумовного переходу та виклику (Unconditional Jump or Call Instructions):

| CALL Subroutine Absolute   | безумовний виклик підпрограми |
|----------------------------|-------------------------------|
| CALLR Subroutine Relative  | відносний виклик підпрограми  |
| JP Jump Absolute           | безумовний перехід            |
| JRA Jump Relative Always   | завжди відносний перехід      |
| NOP No Operation           | пуста операція                |
| RET Return from Subroutine | повернення із підпрограми     |

9)Бітові інструкції (Bit Operations):

| BRES Bit Reset                  | скинути біт                               |
|---------------------------------|-------------------------------------------|
| BSET Bit Set                    | встановити біт                            |
| BTJF Bit Test and Jump if False | перевірка біту, перехід при неспівпадінні |
| BTJT Bit Test and Jump if True  | перевірка біту, перехід при співпадінні   |

10)Інструкції умовного переходу (Conditional Jump Instructions):

| JRC Jump Relative if Carry           | відносний перехід при встановленому       |
|--------------------------------------|-------------------------------------------|
|                                      | перенесенні                               |
| JREQ Jump Relative if Equal          | відносний перехід при рівності            |
| JRF Jump Relative if False           | відносний перехід при логічній нерівності |
| JRH Jump Relative if Half-Carry      | відносний перехід при половинному         |
|                                      | перенесенні                               |
| JRIH Jump Relative if Interrupt High | відносний перехід при перериванні         |

|                                                  | високого рівня                                                |
|--------------------------------------------------|---------------------------------------------------------------|
| JRIL Jump Relative if Interrupt Low              | відносний перехід при перериванні<br>низького рівня           |
| JRM Jump Relative if Interrupt Mask              | відносний перехід при маскованому<br>перериванні              |
| JRMI Jump Relative if Negative                   | відносний перехід при від'ємному значенні                     |
| JRNC Jump Relative if No Carry                   | відносний перехід при відсутності<br>перенесення              |
| JRNE Jump Relative if Not Equal                  | відносний перехід при нерівності                              |
| JRNH Jump Relative if No Half-Carry              | відносний перехід при відсутності<br>половинного перенесення  |
| JRNM Jump Relative if No Interrupt<br>Mask       | відносний перехід при немаскованому<br>перериванні            |
| JRPL Jump Relative if Positive or Zero           | відносний перехід при додатному значенні<br>або рівності нулю |
| JRT Jump Relative if True                        | відносний перехід при логічній істинності                     |
| JRUGE Jump Relative if Unsigned Greater or Equal | відносний перехід якщо значення більше<br>або рівне           |
| JRUGT Jump Relative if Greater Than              | відносний перехід якщо значення більше                        |
| JRULE Jump Relative if Lower or<br>Equal         | відносний перехід якщо значення менше<br>або рівне            |
| JRULT Jump Relative if Lower Than                | відносний перехід якщо значення менше                         |

### 11)Керування перериваннями (Interrupt Management)

| HALT                    | зупинка виконання програми |
|-------------------------|----------------------------|
| IRET Interrupt Return   | повернення із переривання  |
| TRAP Software Interrupt | програмне переривання      |
| WFI Wait for Interrupt  | очікування переривання     |

### 12)Управління прапорцями (Condition Code Register)

| RCF Reset Carry Flag     | скинути прапорець перенесення    |
|--------------------------|----------------------------------|
| RIM Reset Interrupt Mask | скинути маскування переривань    |
| SCF Set Carry Flag       | встановити прапорець перенесення |
| SIM Set Interrupt Mask   | встановити маскування переривань |

#### Режими адресації даних мікроконтролера ST7 Microelectronics

Для команд, які працюють з пам'яттю можливі наступні режими адресації:

1. **Регістрова**, в якій значення з одного регістру передається в інший. Приклад: ld A,X.

2. **Безпосередн**є вказування значення. Характеризується наявністю значка " # " перед самим значенням. Приклад: ld A,#\$0A – завантажити в акумулятор число 10 або ld X,#\$81 – завантажити в індексний регістр X число 129.

3. **Пряме** звернення до комірки пам'яті (або спеціалізованого регістру) з вказуванням адреси. Приклад: ld A,\$0A – завантажити в акумулятор число, що знаходиться за адресою \$0A, тобто, вміст регістру LTCNTR, або ld \$81,Y – вивантажити в комірку пам'яті за адресою \$81 індексний регістр Y.

4. Звернення до комірки за індексом. Приклад: ld A,(12345,X) – завантажити в акумулятор число, що знаходиться за адресою (X +12345). Замість регістру X може бути регістр Y. Можливі варіанти, коли відсутнє зміщення, наприклад: ld A,(X) або ld (X),A. В цьому випадку адреса комірки буде не більше \$FF.

5. **Непряма** адресація використовує комірку як індекс. Приклад: ld A,([\$80],X) – адреса формується як сума регістру X та вмісту комірки \$80. З отриманої адреси значення передається в акумулятор. Замість регістру X може бути регістр Y, наприклад: ld ([\$80],Y),X – переписати регістр X в пам'ять за адресою (Y + вміст комірки \$80).