Reference Manual

Measurement Expressions Reference Manual

Gunther Kraut

Copyright (©) 2006 Gunther Kraut <gn.kraut@online.de>
Copyright (©) 2006 Stefan Jahn <stefan@lkcc.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation. A copy of the license is included in the section entitled "GNU
Free Documentation License”.

Introduction

This manual describes the measurement expressions available in "Qucs”, the "Quite Uni-
versal Circuit Simulator”.

Measurement expressions come into play whenever the results of a "Qucs” simulation run
need post processing. Examples would be the conversion of a simulated voltage waveform
from volts to dBV, the root mean square value of that waveform or the determination of
the peak voltage. The "Qucs” measurement functions offer a rich set of data manipulation
tools.

If you are not familiar with the way how to enter those formulas, please refer to chapter
“Using Measurement Expressions”, which points out the possibilities to create and change
measurement expressions. Also the data types supported are specified here. Chapter
“Functions Syntax and Overview”introduces the basic syntax of functions and a categorical
list of all functions available. The core of the document, a detailed compilation of all "Qucs”
functions divided into different categories, is presented in chapter “Math Functions” and
chapter “Electronics Functions”. Finally, the appendix contains an alphabetical list of all
functions.

Using Measurement Expressions

The chapter describes the usage of mathematical expressions for post processing simulation
data in “Qucs”, how to enter formulas and modifying them. It gives a brief description of
the overall syntax of those expressions.

Entering Measurement Expressions

Measurement expressions generate new datasets by function or operator driven evaluation
of simulation results. Those new datasets are accessible in the data display tab after
simulation. The related equations can be entered into the schematic editor by the following
means:

e Using the equation icon in the “Tools” bar (see fig. 1)

e Using menu item “Insert” — "Insert equation”

[€ Qucs 0.0.8

File Edit Insert Project Tools Simulation View Help
THBERO2 o hamg ¥ AARK
RO TR/ ABL - @Y ¥

Projects lCuntent Cumpunents] u
[New I Open I Delete l
RFCoil
mathe_func_test
test?

test3
test

Figure 1: Entering a new measurement expression via equation icon

You can now place the equation symbol by mouse click anywhere in the schematic. Each
mouse click creates a new equation instance each consisting of a variable number of mea-
surement expressions. Press the [@ key if you do not like further equations.

Another option is to select an existing equation, copy it (either by menu item “Edit” —
"Copy” or by [Cud] + 1) and paste it (either by menu item “Edit” — "Paste” or by [Cr]
+).

After having successfully created an equation instance, you are now able to modify it.

Changing Measurement Expressions

For sake of simplicity we assume that you have just generated a new equation - if you like
to change an existing, more complicated equation the following steps are the same.

Thus, the excerpt of your schematic surface looks like that in fig. 2.

You can now manipulate the current name of the equation instance. Simply click onto
“Eqnl”, which becomes highlighted. Then type in a new name for it and finalise your

inputs with the [Enter| key.

After that, you can enter a new equation. Again, click onto “y=1". Only the “1” is marked,

1 [@ + means that you have to press the [@ key and the key simultaneously.

2

l & untitled

‘ | Equation
.Eqgn1.
y=1

Figure 2: Newly created equation

® Edit Component Properties ? 0] |X

equation

Name: |Eqn1 |

‘Name ‘Value ‘display ‘Description ‘

y | yes Iy |

Export yes no put result into dataset [yes, no] ‘1 ‘
x| display in schematic
‘ Add H Remove

OK ‘ ‘ Apply ‘ ‘ Cancel

Figure 3: Editing equation properties

and you can enter a new expression there. Please use the variables, operators and constants
described in chapter “Syntaz of Measurement Expressions”. Note that you can also refer
to results (dependents) of other equations. But how to change the name of the current
dependent “y”? Right click onto the equation, and a context menu opens. Select the first
item called “Edit properties”. A sub window appears, which should look like the one in fig.
3. The alternative for entering equations is to double click onto the equation.

You can now change the name of the dependent, the equation itself (which is “1” in the
example shown) and the name of the equation. If you do not want the result to be exported
into the data display tab, but temporarily need it for further calculations, select “no” in
the “Export value” cell.

Syntax of Measurement Expressions

Function names, variable names, and constant names are all case sensitive in measurement

expressions - it is distinguished between lowercase and uppercase letters such as 'a’ and
7A7

In functions, commas are used to separate arguments.

Variable Names

User defined variable names consist of a letter, followed by any number of letters, digits,
or underscores.

The syntax of variable names created by the "Qucs” simulator is as specified in table 1.
Please note that all voltages and currents in “Qucs” are peak values except the noise voltages
and currents which are rms values at 1Hz bandwidth.

| Variable Name | Description |

nodename.V | DC voltage at node nodename
name.l | DC current through circuit component name
nodename.v | AC voltage at node nodename
name.i | AC current through circuit component name
nodename.vn | AC noise voltage at node nodename
name.in | AC noise current through circuit component name
nodename.Vt | Transient voltage at node nodename
name.lt | Transient current through circuit component name
name.OP | name = component name, OP = operating point (device dependent),
e.g. D1.1d
S[x,y] | S-parameter, e.g. S[1,1]
Rn | equivalent noise resistance
Sopt | optimal reflection coefficient for minimum noise
Fmin | minimum noise figure
F | noise figure
nodename.Vb | Harmonic balance voltage at node nodename

Table 1: Syntax of simulator generated variable names

Numbers

Numbers are written in conventional decimal way, with an optional decimal point between
the digits. For powers of ten, the familiar scientific notation with an ’e’ is used. In this way,
"1.234e6’ is an example for the real floating point number 1234000. Imaginary numbers
can be entered by a multiplication factor i’ or ’j’ (see also table 2). An example would be
"142*1” or - if you want to leave out the multiplication sign - "1+i2’.

Built-in constants

The constants which can be used within measurement expressions are given in table 2.

’ Constant \ Description \ Value ‘
e Euler’s constant 2.718282
1,] Imaginary unit (\/—_1) il
kB Boltzmann’s constant | 1.380658¢23 J/K
pi s 3.141593

Table 2: Built-in Constants

Operators

Operator Precedence FExpressions are evaluated in the standard way, meaning from left
to right, unless there are parentheses. The priority of operators is also handled familiarly,
thus for example multiplication has precedence to addition. Table 3 specifies a sorted list
of all operators, the topmost having highest priority. Operators on the same line have the
same precedence.

Ranges The general nomenclature of ranges is displayed in table 4. It shows one-
dimensional ranges, whereas also n-dimensional ranges are possible, if you consider nested
sweeps.

Post Processing of Simulation Data by Expressions

After a simulation has run the results are stored in datasets. Usually, such a dataset is
a vector or a matrix, but may also be a real or complex scalar. For transient analysis,
this dataset contains voltage or current information over time, for Harmonic Balance it

’ Operator \ Name \ Example ‘

() Parentheses, function call | max(v)

) Exponentiation 374
Multiplication 3*4

/ Division 3/4

% Modulo 4%3

+ Addition 3+4

- Subtraction 3-4
Range operator 3:12

Table 3: Operator priorities

‘ Syntax ‘ Explanation ‘
m:n | Range from index m to index n
n Range up to index n
m: Range starting from index m

No range limitations

Table 4: Range definition

contains amplitudes at dedicated frequencies, while for S-parameter analysis a vector of
matrices (thus matrices in dependency of frequency) is returned. In further generalisation
the components of vectors and matrices consist of complex numbers.

Additionally, datasets can be generated by using expressions. As an example the linspace()
function shall be named, which creates a vector of linearly spaced elements.

Functions Syntax and Overview

This chapter introduces the basic syntax of the function descriptions and contains a cate-
gorical list of all available functions.

Functions Reference Format

"Qucs” provides a rich set of functions, which can be used to generate and display new
datasets by function based evaluation of simulation results. Beside a large number of
mathematical standard functions such as square root (sqrt), exponential function (exp),

absolute value (abs), functions especially useful for calculation and transformation of elec-
tronic values are implemented. Examples for the latter would be the conversion from
Watts to dBm, the generation of noise circles in an amplifier design, or the conversion from
S-parameters to Y-parameters.

Functions Reference Format

In the subsequent two chapters, each function is described using the following structure:

<Function Name>

Outlines briefly the functionality of the function.

Syntax

Defines the general syntax of this function.

Arguments

Name, type, definition range and whether the argument is optional, are tabulated here. In
case of an optional parameter the default value is specified. “Type” is a list defining the
arguments allowed and may contain the following symbols:

’ Symbol \ Description ‘
R Real number
C Complex number
R™ Vector consisting of n real elements
cr Vector consisting of n complex elements
NG Real matrix consisting of m rows and n columns
Cm>m | Complex matrix consisting of m rows and n columns
R™Mxnxp Vector of p real m x n matrices
Cmxnxp Vector of p complex m x n matrices

“Definition range” specifies the allowed range. Each range is introduced by a bracket, either
“[” or “]”, meaning that the following start value of the range is either included or excluded.
The start value is separated from the end value by a comma. Then the end value follows,

finished by a bracket again, either “[” or “|”. The first bracket mentioned means “excluding
the end value”, the second means “including”.

If a range is given for a complex number, this specifies the real or imaginary value of that
number. If a range is given for a real or complex vector or matrix, this specifies the real
or imaginary value of each element of that vector or matrix. The symbols mean “includes
listed value” and “excludes listed value”.

Description

Gives a more detailed description on what the function does and what it returns. In case
some background knowledge is presented.

Examples

Shows an application of the function by one or several simple examples.

See also

Shows links to related functions. A mouse click onto the desired link leads to an immediate
jump to that function.

Functions Listed by Category

This compilation shows all “Qucs” functions sorted by category. Please click on the desired
function to go to its detailed description.

Math Functions

Vectors and Matrices: Creation

eye() ... Creates n x n identity matrix
linspace() ... Creates a real vector with linearly spaced components
logspace() ... Creates a real vector with logarithmically spaced components

Vectors and Matrices: Basic Matrix Functions

adjoint() Adjoint matrix
array() ... Read out single elements
det() ... Determinant of a matrix
inverse() Matrix inverse
transpose() Matrix transpose

abs Absolute value
angle Phase angle in radians of a complex number. Synonym for “arg”
arg Phase angle in radians of a complex number
conj Conjugate of a complex number
deg2rad Converts phase from degrees into radians

()

()

()

()

()

() Imaginary value of a complex number

() Magnitude of a complex number

() ... Square of the absolute value of a vector
phase() ... Phase angle in degrees of a complex number

() Transform from polar coordinates into complex number

() Converts phase from degrees into radians

() Real value of a complex number

() Signum function

() Sign function

() Square of a number

() Square root

() Unwraps a phase vector in radians

Elementary Mathematical Functions: Exponential and Logarithmic Functions

exp() .. Exponential function
logl0() ... Decimal logarithm
log2() ... Binary logarithm
In() .. Natural logarithm (base e¢)

Elementary Mathematical Functions: Trigonometry

cos() Cosine function
cosec() ... Cosecant

cot() .. Cotangent function

sec() Secant

sin() Sine function

tan() Tangent function

arccos() Arc cosine (also known as “inverse cosine”)
arccot() Arc cotangent

arcsin() Arc sine (also known as “inverse sine”)
arctan() Arc tangent (also known as “inverse tangent”)

cosh() Hyperbolic cosine
cosech() Hyperbolic cosecant
coth() Hyperbolic cotangent
sech() Hyperbolic secant
sinh() Hyperbolic sine
tanh() Hyperbolic tangent

Elementary Mathematical Functions: Inverse Hyperbolic Functions

arcosh/() Hyperbolic area cosine
arcoth() ... Hyperbolic area cotangent
arsinh() ... Hyperbolic area sine
artanh() Hyperbolic area tangent

Elementary Mathematical Functions: Rounding

() Round to the next higher integer

() ... Truncate decimal places from real number
floor() ... Round to the next lower integer

() Round to nearest integer

10

Elementary Mathematical Functions: Special Mathematical Functions

Modified Bessel function of order zero

Bessel function of n-th order

Bessel function of second kind and n-th order
Error function

Complementary error function

Inverse error function

Inverse complementary error function

Sinc function

Step function

Average of vector elements
Cumulative average of vector elements
Maximum value

Minimum value

Root Mean Square of vector elements
Running average of vector elements
Standard deviation of vector elements
Variance of vector elements

Cumulative product of vector elements
Cumulative sum of vector elements
Equidistant spline interpolation of data vector
Product of vector elements

Sum of vector elements

Returns x-value which is associated with the y-value nearest to a

specified y-value in a given vector

Returns y-value of a given vector which is located nearest to the

specified x-value

Data Analysis: Differentiation and Integration

diff()
integrate()

Differentiate vector with respect to another vector
Integrate vector

11

Data Analysis: Signal Processing

Time2Freq
Freq2Time

()
()
()
ifft()
()
()
9)

Electronics Functions

Unit Conversion

Discrete Fourier Transform

Fast Fourier Transform

Inverse Discrete Fourier Transform

Inverse Fast Fourier Transform

Interpreted Discrete Fourier Transform
Interpreted Inverse Discrete Fourier Transform
Kaiser-Bessel derived window

dB value

Convert voltage to power in dBm
Convert power in dBm to power in Watts
Convert power in Watts to power in dBm

Converts reflection coefficient to voltage standing wave ratio (VSWR)
Converts reflection coefficient to admittance
Converts reflection coefficient to impedance
Converts admittance to reflection coefficient
Converts impedance to reflection coefficient

Converts S-parameter matrix to S-parameter matrix with different
reference impedance(s)

Converts S-parameter matrix to Y-parameter matrix

Converts S-parameter matrix to Z-parameter matrix

Converts a two-port matrix from one representation into another
Converts Y-parameter matrix to S-parameter matrix

Converts Y-parameter matrix to Z-parameter matrix

Converts Z-parameter matrix to S-parameter matrix

Converts Z-parameter matrix to Y-parameter matrix

12

Amplifiers

GaCircle()
GpCircle()
Mu()

Mu2()
NoiseCircle()
0

Rollet()
StabCircleL()
StabCircleS()

Circle(s) with constant available power gain Ga in the source plane
Circle(s) with constant operating power gain Gp in the load plane
Mu stability factor of a two-port S-parameter matrix

Mu’ stability factor of a two-port S-parameter matrix

Generates circle(s) with constant Noise Figure(s)

Returns a data item based upon vector or matrix vector with
dependency on a given vector

Rollet stability factor of a two-port S-parameter matrix

Stability circle in the load plane

Stability circle in the source plane

Math Functions

Vectors and Matrices

Creation

eye()

Creates n x n identity matrix.

Syntax

y=eye(n)

Arguments

’ Name \ Type \ Def. Range \ Required ‘

|

n | N |

1, +00] \ V \

Description

This function creates the n x n identity matrix, that is

13

O =
)

[a=)

Example

y=eye(2)

See also

e 0

0

0 1
0

returns

14

linspace()
Creates a real vector with linearly spaced components.
Syntax

y=linspace(xs,xe,n)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘

XS R |]—o0,40o0| V

xe R |—00, +00] V

n N 2, +00] Vi
Description

This function creates a real vector with n linearly spaced components. The first component
is s, the last one is ze.

Example

y=linspace(1,2,3) returns 1, 1.5, 2.

See also

logspace()

15

logspace()

Creates a real vector with logarithmically spaced components.
Syntax
y=logspace(xs,xe,n)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘

XS R |]—o0,40o0| V

xe R |—00, +00] V

n N 2, +00] Vi
Description

This function creates a real vector with n logarithmically spaced components. The first
component is zs, the last one is ze.

Example

y=logspace(1,2,3) returns 1, 1.41, 2.

See also

linspace()

16

Basic Matrix Functions
adjoint()

Adjoint matrix.

Syntax

Y=adjoint(X)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
’ X ‘ Rmxny@mxn) Rmxnxp’ Cmxnxp ‘]-OO,—l-OO[‘ \/ ‘
Description

This function calculates the adjoint matrix Y of a matrix X:

Y = X7 = (X*)", where X* is the complex conjugate matrix of X and X7 is the trans-
posed of the matrix X.

Example

341 0
0 |3+l

X=eye(2)*(3+i) returns . Then,

3911 0
0 | 331 |

Y=adjoint (X) returns

See also

transpose(), conj()

17

array|()

Read out single elements.
Syntax

The “array()” function is an implicit command. Thus normally the respective first expres-
sion ("preferred”) is used.

’ Syntax H Preferred ‘ Alternative H Preferred ‘ Alternative ‘
1 y=VM[i,j] | y=array(VM.i,j)

2 y:M[17J] y:array(M,i,j)
3 y=VMIk] | y=array(VM k)
4 y=vli] y=array(v,i) y=v]r] y=array(v,r)
5 y=vli,r] y=array(v,i,r) y=v|r,j] y=array(v,r,j)
y=V|i,j] y=array(v,i,j) y=v[rl,r2] | y=array(v,rl,r2)
6 y=sli] y=array|(s,i)
Arguments
’ Name \ Type \ Def. Range \ Required ‘
VM | R Cmxnxp |—00, +00] V/(Syntax 1 and 3)
M Rm>m Cmxn |—o0, +00[V/(Syntax 2)
v R™,C" |—00, +00] V/(Syntax 4 and 5)
r, rl, r2 Rangexs : xe 0<zs<n—1l,zs<ze<n-—1 V/(Syntax 4 and 5)
i N 0<i<m_1 J(Syntax 1, 2, 4, 5, 6)
j N 0<j<n-1 V/(Syntax 1, 2, 5)
k N 0<k<p-1 V/(Syntax 3)
S String Arbitrary characters V/(Syntax 6)
Description

This function reads out real or complex vectors of matrices, matrices and vectors or strings.
Please refer to the following table for the return values:

18

’ Syntax

\ Argument 1 \ Argument 2 \ Argument 3 H Result

y=VMIij] VM = (1) ieN JjEN Vector
(Lij1, - s Tijic)
y=M[i,]] M = (z4) ieN JEN Number z;;
y=VM[K] VM = (1) keN Matrix
L11k Link
Tmik Tmnk
y=vli] v =(v;) ieN Number v;
y=v|xs:xe] v =(v;) xs,...,Te Vector
(sta Ty U:ce)
y=vl[i,xs:xe] v=(v;) ieN xs,...,ze || Vector
(st; Ty Ume)
y=v[xs:xe,j] v = (1) xS, ..., xe xs,...,xe || Vector
(sta Ty U:ce)
y=V|i,j] v=(v;) ieN xs,...,ze || Vector
(U:vs; Tty Ume)
y=v|[xsl:xel, v =(v;) xsl,...,xel | xs2,...,xe2 || Vector
xs2:xe2] (Vzsy** 5 Uge)
y=sli] s = (%) ieN Character s;

Again, v denotes a vector, M a matrix, VM a vector of matrices, s a vector of characters

and zs, zsl, xs2, we, xel, xe2 are range limiters.

Example

v=linspace(1,2,4) returns 1, 1.33, 1.67, 2. Then,

y=v[3] returns 2.

See also

19

det()

Determinant of a matrix.
Syntax

y=det(X)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘]Rnxny(cnxn7]Rm><n><p7 Cmxnxp ‘]—OO,—|—OO[‘ \/ ‘

Description

This function calculates the determinant of a quadratical n x n matrix X. The result is
either a real or a complex number.

Example

X=eye (2)*3 returns . Then,

y=det (X) returns 9.

See also

eye()

20

inverse()

Matrix inverse.
Syntax

Y=inverse(X)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘]Rnxny(cnxn7]Rm><n><p7 Cmxnxp ‘]—OO,—|—OO[‘ \/ ‘
Description

This function inverts a quadratical n x n matrix X. The generated inverted matrix Y fulfills
the equation

XY =X-X"1=1, where “-” denotes matrix multiplication and “1” the identity matrix.

The matrix X must be regular, that means that its determinant A # 0.

Example
310
X=eye (2)*3 returns NEER: Then,
, 0.333 0
Y=inverse(X) returns 0 0333

See also

transpose(), eye(), det()

21

transpose()

Matrix transpose.
Syntax

Y=transpose(X)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ Rmxn)cmxn7]Rm><n><p7 Cmxnxp ‘]-OO,—l-OO[‘ \/ ‘
Description

This function transposes a m x n matrix X, which is equivalent to exchanging rows and
columns according to

Y = XT = (25)" = (z;;) with 1 <i<m, 1<j<n

The generated matrix Y is a n x m matrix.

Example

X=eye(2)*3 returns g g . Then,
310
Y=transpose(X) returns 03

See also

eye(), inverse()

22

Elementary Mathematical Functions

Basic Real and Complex Functions

abs()

Absolute value.
Syntax
y=abs(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘]R, (C, Rn7 (cn7]Rm><n7<cm><n7 Rmxnxp’ Cmxnxp ‘]-OO,—f—OO[‘ \/ ‘

Description

This function calculates the absolute value of a real or complex number, vector or matrix.

x forx>0

FoerR:y:{ —wforz <0

ForCsz :=a+ib A abeR: y=+a?+b?

For z being a vector or a matrix the two equations above are applied to the components
of z.

Examples

y=abs(-3) returns 3,

y=abs (-3+4x*1i) returns 5.
See also

mag(), norm(), real(), imag(), conj(), phase(), arg()

23

angle()
Phase angle in radians of a complex number. Synonym for “arg”.

Syntax
y=angle(x)
See also

abs(), mag(), norm(), real(), imag(), conj(), phase(), arg()

24

arg()

Phase angle in radians of a complex number.
Syntax
y=arg(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
‘ < ‘ R, C, Rn’ (Cn’]Rmxnﬂjmxn7]Rmxnxp7 Cmxnxp ‘]_007_{_00[‘ \/ ‘

Description

This function returns the phase angle in degrees of a real or complex number, vector or
matrix.

0 forxz>0

Fora:E]R:y:{7T forz <0

ForC>xz :=a+1ib A a,beR:

’ Definition range ‘ Result ‘
a>0,b>0 y:arctan(g
a<0,b>0 yzarctan(g)—kw
a<0,b<0 y:arctan(g)—ﬂ
a>0,b<0 y:arctan(g)
a=0,b>0 y=75
a>0,b>0 y=—3
a=0,b=0 y=20

In this case the arctan() function returns values in radians. The result y of the phase
function is in the range [—m, +n]. For z being a vector or a matrix the two equations
above are applied to the components of z.

Examples

25

y=arg(-3) returns 3.14,

y=arg(-3+4x*i) returns 2.21.

See also

abs(), mag(), norm(), real(), imag(), conj(), phase()

26

conj()

Conjugate of a complex number.
Syntax
y=conj(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘]R, (C, Rn7 (Cn7 Rmxn7<cm><n’ Rmxnxp’ Cmxnxp ‘]_007_'_00[‘ \/ ‘

Description

This function returns the conjugate of a real or complex number, vector or matrix.
ForzreR: y==x
ForCsx :=a+ibANabeR y=a—1b

For z being a vector or a matrix the two equations above are applied to the components
of x.

Example

y=conj(-3+4*i) returns -3-4*i.

See also

abs(), mag(), norm(), real(), imag(), phase(), arg()

27

deg2rad()

Converts phase from degrees into radians.
Syntax

y=deg2rad(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +o0] ‘ v ‘
Description

This function converts a real phase, a complex phase or a phase vector given in degrees
into radians.

ForxGR:y:@x

T
Fi Y =—
orze C:y 180 Re{x}

For z being a vector the two equations above are applied to the components of x.
Example

y=deg2rad (45) returns 0.785.

See also

rad2deg(), phase(), arg()

28

imag()

Imaginary value of a complex number.
Syntax
y=imag(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘]R, (C, Rn7 (cn7]Rm><n7<cm><n7 Rmxnxp’ Cmxnxp ‘]_007_'_00[‘ \/ ‘

Description

This function returns the imaginary value of a real or complex number, vector or matrix.
ForzxeR: y=0
ForCsx :=a+ibANabeR: y=1>

For z being a vector or a matrix the two equations above are applied to the components
of x.

Example

y=imag(-3+4*i) returns 4.

See also

abs(), mag(), norm(), real(), conj(), phase(), arg()

29

mag()

Magnitude of a complex number.
Syntax
y=mag(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘]R, (C, Rn7 (cn7]Rm><n7<cm><n7 Rmxnxp’ Cmxnxp ‘]_007_'_00[‘ \/ ‘

Description

This function calculates the magnitude (absolute value) of a real or complex number, vector
or matrix.

x forxz>0

ForxGR:y:{ —aforz <0

ForCs>x :=a+ib A a,beR: y=+va?+b?

For z being a vector or a matrix the two equations above are applied to the components
of x.

Examples

y=mag(-3) returns 3,

y=mag(-3+4%*i) returns 5.
See also

abs(), norm(), real(), imag(), conj(), phase(), arg()

30

norm/()

Square of the absolute value of a vector.
Syntax

y=norm(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +o0] ‘ v ‘
Description

This function returns the square of the absolute value of a real or complex number, vector
or matrix.

For z € R: y = 22
ForC>z :=a+ib A a,beR: y=a®+ b

For z being a vector or a matrix the two equations above are applied to the components
of z.

Example

y=norm(-3+4*i) returns 25.

See also

abs(), mag(), real(), imag(), conj(), phase(), arg()

31

phase()

Phase angle in degrees of a complex number.
Syntax
y=phase(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
‘ < ‘ R, C, Rn’ (Cn’]Rmxnﬂjmxn7]Rmxnxp7 Cmxnxp ‘]_007_{_00[‘ \/ ‘

Description

This function returns the phase angle in degrees of a real or complex number, vector or
matrix.

0 forx>0

FOWER:y:{ 180 for & < 0

ForC>xz :=a+1ib A a,beR:

’ Definition range ‘ Result ‘

a>0,b>0 y:arctan(é)

a<0,b>0 y:arctan(g)iwo
a<0,b<0 y:arctan(b)—180

a

a>0,b<0 y:arctan(g)
a=0,b>0 y =90
a>0,b>0 y=-—90
a=0,b=0 y=20

In this case the arctan() function returns values in degrees. The result y of the phase
function is in the range [—180, +180]. For z being a vector or a matrix the two equations
above are applied to the components of z.

Examples

32

y=phase (-3) returns 180,

y=phase (-3+4x*i) returns 127.

See also

abs(), mag(), norm(), real(), imag(), conj(), arg()

33

polar()

Transform from polar coordinates into complex number.
Syntax
c=polar(a,p)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘

a R™ C" | |—o0,+00] vV
p R™ C" | |—o0,+00] vV
Description

This function transforms a point given in polar coordinates (amplitude ¢ and phase p in
degrees) in the complex plane into the corresponding complex number:

r+iy=ae®=acosp+iasinp

For a or p being vectors the equation above is applied to the components of a or p.

Example

c=polar(3,45) returns 2.124j2.12.

See also

abs(), mag(), norm(), real(), imag(), conj(), phase(), arg(), exp(), cos(), sin()

34

rad2deg()

Converts phase from degrees into radians.
Syntax

y=rad2deg(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +o0] ‘ v ‘
Description

This function converts a real phase, a complex phase or a phase vector given in radians
into degrees.

180
ForreR: y=—=x
s

180
For ze C: y = — Re{x}
m

For z being a vector the two equations above are applied to the components of x.
Example

y=deg2rad(0.785) returns 45.

See also

deg2rad(), phase(), arg()

35

real()

Real value of a complex number.
Syntax
y=real(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘]R, (C, Rn7 (cn7 Rmxn7<cm><n’Rm><n><p’ Cmxnxp ‘]-OO,-{—OO[‘ \/ ‘

Description

This function returns the real value of a real or complex number, vector or matrix.
ForzreR: y==x
ForCsx :==a+ibANabeR y=a

For z being a vector or a matrix the two equations above are applied to the components
of x.

Example

y=real(-3+4*i) returns -3.

See also

abs(), mag(), norm(), imag(), conj(), phase(), arg()

36

signum()
Signum function.
Syntax

y=signum(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
’ X \ R, C, R", C" \ |—00, +00] \ vV ‘
Description

This function calculates the sign of a real or complex number or vector.

1 forx>0
ForreR:y=<¢ 0 forz=0

—1 forxz <0

x

— forx #0
Forz e C:. y = |x|f 7

0 forxz=0

For z being a vector the two equations above are applied to the components of z.

Examples

y=signum(-4) returns -1,

y=signum(3+4x*i) returns 0.6+j0.8.

See also

abs(), sign()

37

sign/()

Sign function.
Syntax
y=sign(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function calculates the sign of a real or complex number or vector.

|1 forz>=0
FoerR.y—{_1f0T$<0
x
— 0
Forz e C. y = mforx#
1 forx=0

For x being a vector the two equations above are applied to the components of z.

Examples

y=sign(-4) returns -1,

y=sign(3+4x*i) returns 0.6+j0.8.

See also

abs(), signum()

38

sqr()

Square of a number.
Syntax
y=sqr(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function calculates the square root of a real or complex number or vector.

y=a’
For z being a vector the two equations above are applied to the components of z.

Examples

y=sqr(-4) returns 16,

y=sqr (3+4*i) returns -74j24.

See also

sqrt()

39

sqrt()

Square root.
Syntax
y=sqrt(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function calculates the square root of a real or complex number or vector.

Nz forz>0
FoerR'y_{i\/—_xforx<0

For 2 € C: y = \/|z| ¢ Zwith ¢ = arg ()

For z being a vector the two equations above are applied to the components of x.
Examples

y=sqrt(-4) returns 0+j2,

y=sqrt (3+4x*i) returns 24jl.

See also

sqr()

40

unwrap()

Unwraps a phase vector in radians.
Syntax

y=unwrap(x)

y=unwrap(X, t)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘

X R™ C" | |—o0,+00] vV
t R] —00, +00] T
Description

This function unwraps a phase vector x to avoid phase jumps. If two consecutive values
of z differ by more than tolerance ¢, F27(depending on the sign of the difference) is added
to the current element of z. The predefined value of the optional parameter ¢ is .

Examples

y=unwrap(3.15*linspace(-2,2,5)) returns -6.3, -9.43, -12.6, -15.7, -18.8,

y=unwrap (2*linspace(-2,2,5),1) returns -4, -8.28, -12.6, -16.8, -21.1,

y=unwrap(2*linspace(-2,2,5),3) returns -4, -2, 0, 2, 4.

See also

abs(), mag(), norm(), real(), imag(), conj(), phase(), arg()

41

Exponential and Logarithmic Functions
exp()

Exponential function.
Syntax
y=exp(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR,C"|]-oo,400[| V |

Description

This function calculates the exponential function of a real or complex number or vector.
Forx e R: y =¢”
For Co>z :=a+ib A a,beR: y=e" ="t =¢ (cosb+ i sinb)

For x being a vector the two equations above are applied to the components of z.

Examples

y=exp(-4) returns 0.0183,

y=exp(3+4*i) returns -13.1-j15.2.

See also

In(), log10(), log2(), cos(), sin()

42

log10()

Decimal logarithm.
Syntax

y=log10(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR",C"[]-00,+0[\{0} | V |

Description

This function calculates the principal value of the decimal logarithm (base 10) of a real or
complex number or vector.

111111((131:0)) forxz >0
Forz e R: y= n(-z) . =
m(0) oy fore<?
o In(fz]) | arg(x)
ForzeC: y= I (10) +Z1n(10)

For x being a vector the two equations above are applied to the components of z.

Examples

y=1logl10(-4) returns 0.602+j1.36,

y=logl10(3+4*i) returns 0.699+j0.403.

See also

In(), log2(), exp(), arg()

43

log2()

Binary logarithm.
Syntax

y=log2(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR",C"[]-00,+0[\{0} | V |

Description

This function calculates the principal value of the binary logarithm (base 2) of a real or
complex number or vector.

J—

n ()

forxz >0

Forz e R: y= m(_ml)n(Z). -
I (2) +Zln(2) forz <0

ForzeC: y= In(|z[) , ; arg ()

m@) ()

For x being a vector the two equations above are applied to the components of z.
Examples

y=log2(-4) returns 2+j4.53,

y=log2(3+4%1i) returns 2.32+j1.34.

See also

In(), log10(), exp(), arg()

44

In()

Natural logarithm (base e).
Syntax
y=In(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘R, C, R C" H—Oo,—i—oo[\{()} \ V ‘

Description

This function calculates the principal value of the natural logarithm (base e) of a real or
complex number or vector.

In(z) forx>0

For z € R: y:{ In(—z) forxz <0

For z € C: y =In(|z|) + i arg ()

For z being a vector the two equations above are applied to the components of x.
Examples

y=1n(-4) returns 1.39+j3.14,

y=1n(3+4%*i) returns 1.61+4j0.927.

See also

log2(), log10(), exp(), arg()

45

Trigonometry

cos()

Cosine function.
Syntax
y=cos(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR,C"|]-oo,400[| V |

Description

This function calculates the cosine of a real or complex number or vector.
For z € R: y = cos (x) with y € [-1, 1]
For z € C: y = 3 (exp (ix) + exp (—ix))

For x being a vector the two equations above are applied to the components of z.
Examples

y=cos(-0.5) returns 0.878,

y=cos (3+4*1i) returns -27.0-j3.85.
See also

sin(), tan(), arccos()

46

cosec()

Cosecant.
Syntax
y=cosec(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x [RCR",C"[]-oo,+oo[\{kr}, keZ]| |

Description

This function calculates the cosecant of a real or complex number or vector.

1

sin x

Yy = cosecr =

For z being a vector the equation above is applied to the components of x.

Example

y=cosec(1) returns 1.19.

See also

sin(), sec()

47

cot()

Cotangent function.
Syntax
y=cot(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x [RCR",C"[]-oo,+oo[\{kr}, keZ]| |

Description

This function calculates the cotangent of a real or complex number or vector.

Forz e R: y = with y € [—o0, +o0]

1
tan (x)

SN2
1
Forxe(c:y:i<%>

exp (iz)* — 1

For x being a vector the two equations above are applied to the components of z.
Examples

y=cot(-0.5) returns -1.83,

y=cot (3+4*1i) returns -0.000188-j1.
See also

tan(), sin(), cos(), arctan(), arccot()

48

sec()

Secant.
Syntax
y=sec(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x [RCR,C"[]-oo, 40\ {(k+3)7}, keZ]|

Description

This function calculates the secant of a real or complex number or vector.

1
cos T

Yy =sec r=

For z being a vector the equation above is applied to the components of x.

Example

y=sec(0) returns 1.

See also

cos(), cosec()

49

sin()

Sine function.
Syntax
y=sin(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function calculates the sine of a real or complex number or vector.
For z € R: y = sin (z) with y € [—1, 1]
For z € C: y = 3 (exp (—iz) —exp (iz))

For z being a vector the two equations above are applied to the components of x.
Examples

y=sin(-0.5) returns -0.479,

y=sin(3+4*i) returns 3.85-j27.
See also

cos(), tan(), arcsin()

20

tan()

Tangent function.
Syntax
y=tan(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x [RCR",C"[]-oo,+c\{(k+2)7}, keZ]| v]

Description

This function calculates the tangent of a real or complex number or vector.

For z € R: y = tan (z) with y € [—00, +00]

exp(iz)’ —1
ForzeC y=—i| —F—
exp (ixz)” 41

For x being a vector the two equations above are applied to the components of z.
Examples

y=tan(-0.5) returns -0.546,

y=tan(3+4*i) returns -0.000187+;j0.999.
See also

cot(), sin(), cos(), arctan(), arccot()

51

Inverse Trigonometric Functions

arccos()

Arc cosine (also known as “inverse cosine”).
Syntax

y=arccos(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C'| [-1,+1] | |
Description

This function calculates principal value of the the arc cosine of a real or complex number
or vector.

For z € R: y = arccos (z) with y € [0, 7]
Forz e C: y=—i ln(;c—{—\/xQ—l)

For z being a vector the two equations above are applied to the components of x.
Examples

y=arccos(-1) returns 3.14,

y=arccos (3+4x*i) returns 0.937-j2.31.
See also

cos(), arcsin(), arctan(), arccot()

52

arccot()

Arc cotangent.
Syntax

y=arccot(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +o0] ‘ v ‘
Description

This function calculates the principal value of the arc cotangent of a real or complex number
or vector.

For z € R: y =arccot(x) with y € [0, 7]

For z € C: y:% ln(xll)
T+

For x being a vector the two equations above are applied to the components of z.

Examples

y=arccot(-1) returns 2.36,

y=arccot (3+4x*i) returns 0.122-j0.159.
See also

cot(), tan(), arccos(), arcsin(), arctan()

93

arcsin()

Arc sine (also known as “inverse sine”).
Syntax

y=arcsin(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |[RCR,C'| [-1,+41] | |
Description

This function calculates the principal value of the arc sine of a real or complex number or
vector.

For x € R: y = arcsin (x) with y € [—g, g}

Forz e C: y=—i ln[i$+\/1—x2]

For x being a vector the two equations above are applied to the components of z.
Examples

y=arcsin(-1) returns -1.57,

y=arcsin(3+4x*i) returns 0.634+4j2.31.
See also

sin(), arccos(), arctan(), arccot/()

o4

arctan()
Arc tangent (also known as “inverse tangent”).
Syntax

z=arctan(x)

z=arctan(y,x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
X R, C, R, C" | |—o0,+0o0| v

y R, C,R", C" | |—o0, 40|

Description

For the first syntax (z=arctan(z)), this function calculates the principal value of the arc
tangent of a real or complex number or vector.

For z € R: y = arctan (z) with y € [-Z, Z]

1 21
Foer(C:y:—§iln[x_ii—1}

For x being a vector the two equations above are applied to the components of z.

If the second syntax (z=arctan(y, x)) finds application, the expression
z = tarctan (y/x)
(with the arctan() function defined above) is evaluated. The sign of z is determined by

: | + forRe{z}>0
s&gn(z)—{ — forRe{z}>0"

Note that for the second syntax the case z = y = 0 is not defined.

95

Examples

z=arctan(-1) returns -0.785,
z=arctan(3+4x*i) returns 1.45+j0.159,

z=arctan(1,1) returns 0.785.

See also

tan(), arccos(), arcsin(), arccot/()

o6

Hyperbolic Functions

cosh()

Hyperbolic cosine.
Syntax
y=cosh(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR,C"|]-oo,400[| V |

Description

This function calculates the hyperbolic cosine of a real or complex number or vector.
y=jg(e"+e™)

For x being a vector the equation above is applied to the components of z.
Examples

y=cosh(-1) returns 1.54,

y=cosh(3+4x*1i) returns -6.58-j7.58.
See also

exp(), sinh(), tanh(), cos()

o7

cosech()

Hyperbolic cosecant.
Syntax
y=cosech(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R*, C" \ |—o00, +o0o[\ {0} \ V ‘

Description

This function calculates the hyperbolic cosecant of a real or complex number or vector.

B 1
~ sinh z

For z being a vector the equation above is applied to the components of x.

Examples

y=cosech(-1) returns -0.851,

y=cosech(3+4*i) returns -0.0649+j0.0755.

See also

exp(), sinh(), sech(), cosec()

o8

coth()

Hyperbolic cotangent.
Syntax
y=coth(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R*, C" \ |—o00, +o0o[\ {0} \ V ‘

Description

This function calculates the hyperbolic cotangent of a real or complex number or vector.

1 et + e "

y= tanh z et —e %

For z being a vector the equation above is applied to the components of x.

Examples

y=coth(-1) returns -1.31,

y=coth(3+4*i) returns 0.999-j0.0049.

See also

exp(), cosh(), sinh(), tanh(), tan()

29

sech()

Hyperbolic secant.
Syntax
y=sech(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function calculates the hyperbolic secant of a real or complex number or vector.

1
~ cosh x

For z being a vector the equation above is applied to the components of x.

Examples

y=sech(-1) returns 0.648,

y=sech(3+4x*1i) returns -0.0653+j0.0752.

See also

exp(), cosh(), cosech(), sec()

60

sinh()
Hyperbolic sine.
Syntax

y=sinh(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function calculates the hyperbolic sine of a real or complex number or vector.

y=s(e"=e™)

N[—=

For z being a vector the equation above is applied to the components of x.

Examples

y=sinh(-1) returns -1.18,

y=sinh(3+4%*i) returns -6.55-j7.62.

See also

exp(), cosh(), tanh(), sin()

61

tanh()

Hyperbolic tangent.
Syntax
y=tanh(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function calculates the hyperbolic tangent of a real or complex number or vector.

et —e "

y:em—i—e*“

For x being a vector the equation above is applied to the components of z.

Examples

y=tanh(-1) returns -0.762,

y=tanh(3+4x*i) returns 1+4j0.00491.

See also

exp(), cosh(), sinh(), coth(), tan()

62

Inverse Hyperbolic Functions

arcosh()

Hyperbolic area cosine.
Syntax

y=arcosh(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x |RCR,C'| [L,+oo | V |
Description

This function calculates the hyperbolic area cosine of a real or complex number or vector,
which is the inverse function to the “cosh” function.

y = arcoshx = In (:1: +Va?— 1)

For z being a vector the equation above is applied to the components of x.
Examples

y=arcosh(1) returns 0,

y=arcosh(3+4x*i) returns 2.31+j0.937.
See also

arsinh(), artanh(), cosh(), arccos(), In(), sqrt()

63

arcoth()

Hyperbolic area cotangent.
Syntax

y=arcoth(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C"[]—o00,—1[U]+1, +o0] | v]
Description

This function calculates the hyperbolic area cotangent of a real or complex number or
vector, which is the inverse function to the “cotanh” function.

1 1
y = arcothx = 5 In <x+)

r—1

For x being a vector the equation above is applied to the components of z.

Examples

y=arcoth(2) returns 0.549,

y=arcoth(3+4*i) returns 0.118-j0.161.

See also

arsinh(), arcosh(), tanh(), arctan(), In(), sqrt()

64

arsinh()

Hyperbolic area sine.
Syntax

y=arsinh(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +o0] ‘ v ‘
Description

This function calculates the hyperbolic area sine of a real or complex number or vector,
which is the inverse function to the “sinh” function.

y = arsinhz = In (:p + \/FH)

For x being a vector the equation above is applied to the components of z.
Examples

y=arsinh(1) returns 0.881,

y=arsinh(3+4x*i) returns 2.3+j0.918.
See also

arcosh(), artanh(), sinh(), arcsin(), In(), sqrt()

65

artanh()

Hyperbolic area tangent.
Syntax

y=artanh(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |[RCR,C'|]-1,+41] | |
Description

This function calculates the hyperbolic area tangent of a real or complex number or vector,
which is the inverse function to the “tanh” function.

1 1+2x
= artanhx = = 1
artanh x 2n(1_x)

For z being a vector the equation above is applied to the components of x.

Examples

y=artanh(0) returns 0,

y=artanh(3+4*i) returns 0.118+j1.41.

See also

arsinh(), arcosh(), tanh(), arctan(), In(), sqrt()

66

Rounding

ceil()

Round to the next higher integer.
Syntax

y=ceil(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR,C"|]-oo,400[| V |

Description

This function rounds a real number z to the next higher integer value.
If z is a complex number both real part and imaginary part are rounded. For z being a
vector the operation above is applied to the components of z.

Examples

y=ceil(-3.5) returns -3,

y=ceil(3.2+4.7%1i) returns 44jo.

See also

floor(), fix(), round()

67

fix()

Truncate decimal places from real number.
Syntax

y=fix(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function truncates the decimal places from a real number z and returns an integer.
If z is a complex number both real part and imaginary part are rounded. For z being a
vector the operation above is applied to the components of .

Examples

y=fix(-3.5) returns -3,

y=fix(3.2+4.7%1) returns 3+j4.

See also

ceil(), floor(), round()

68

floor()

Round to the next lower integer.
Syntax
y=floor(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function rounds a real number z to the next lower integer value.
If z is a complex number both real part and imaginary part are rounded. For z being a
vector the operation above is applied to the components of .

Examples

y=floor(-3.5) returns -4,

y=floor(3.2+4.7%i) returns 3+j4.

See also

ceil(), fix(), round()

69

round ()

Round to nearest integer.
Syntax
y=round(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function rounds a real number z to its nearest integer value.
If z is a complex number both real part and imaginary part are rounded. For z being a
vector the operation above is applied to the components of .

Examples

y=round(-3.5) returns -4,

y=round(3.2+4.7%i) returns 3+j5.

See also

ceil(), floor(), fix()

70

Special Mathematical Functions

besseliO()

Modified Bessel function of order zero.
Syntax

i0=Dbesseli0(x)

Arguments
\ Name \ Type \ Def. Range \ Required \
’ X ‘ R, C, R*, C" ‘ |—00, +o0] ‘ Vv ‘
Description

This function evaluates the modified Bessel function of order zero of a real or complex
number or vector.

where Jy (z)is the Bessel function of order zero and I' (z)denotes the gamma function.

For z being a vector the equation above is applied to the components of z.

Example

y=besseliO(1) returns 1.266.

See also

besselj(), bessely()

71

besselj()

Bessel function of n-th order.
Syntax

jn=Dbesselj(n,x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
n N [0, +o00[v
X R, C, R", C" | |—o0,+0o0[V
Description

This function evaluates the Bessel function of n-th order of a real or complex number or
vector.
00 k n+2k
(=" (5)

J”(x):;k!l“(nJrknLl)’

where T' (x)denotes the gamma function.

For x being a vector the equation above is applied to the components of z.

Example

y=besselj(1,1) returns 0,44.

See also

besseli0(), bessely()

72

bessely ()

Bessel function of second kind and n-th order.
Syntax

yn=Dbessely(n,x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
n N [0, +o00[v
X R, C, R", C" | |—o0,+0o0[V
Description

This function evaluates the Bessel function of second kind and n-th order of a real or
complex number or vector.

I () cosmm — J_, ()

Y, (z) = lim

.)
m—n Sin mm

where J,, (x)denotes the Bessel function of first kind and n-th order.

For z being a vector the equation above is applied to the components of x.

Example

y=bessely(1,1) returns -0.781.

See also

besseli0(), besselj()

73

erf()

Error function.
Syntax
y=erf(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function evaluates the error function of a real or complex number or vector. For
r € R,

> [
== [eat
Y ﬁ/e
0

If z is a complex number both real part and imaginary part are subjected to the equation
above. For z being a vector the equation is applied to the components of z.

Example
y=erf (0.5) returns 0.520.
See also

erfc(), erfinv(), erfcinv(), exp()

74

erfc()

Complementary error function.
Syntax
y=erfc(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function evaluates the complementary error function of a real or complex number or
vector. For z € R,

y=1-— e dt
e

If z is a complex number both real part and imaginary part are subjected to the equation
above. For z being a vector the equation is applied to the components of z.

Example
y=erfc(0.5) returns 0.480.
See also

erf(), erfinv(), erfcinv(), exp()

75

erfinv()

Inverse error function.
Syntax
y=erfinv(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |[RCR,C'|]-1,+41] | |

Description

This function evaluates the inverse of the error function of a real or complex number or
vector. For —1 <z <1,

y = erf~1(x)

If x is a complex number both real part and imaginary part are subjected to the equation
above. For z being a vector the equation is applied to the components of z.

Example

y=erfinv(0.8) returns 0.906.

See also

erf(), erfc(), erfcinv(), exp()

76

erfcinv()

Inverse complementary error function.
Syntax

y=erfcinv(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |[RCR,C'| Jo,+2[| |
Description

This function evaluates the inverse of the complementary error function of a real or complex
number or vector. For 0 < x < 2,

y = erfc™ ()

If x is a complex number both real part and imaginary part are subjected to the equation
above. For z being a vector the equation is applied to the components of z.

Example

y=erfcinv(0.5) returns 0.477.

See also

erf(), erfc(), erfinv(), exp()

77

sinc()

Sinc function.
Syntax
y=sinc(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function evaluates the sinc function of a real or complex number or vector.

o ST forx #0
y= T
1 forz=0

For z being a vector the equation above is applied to the components of x.

Examples

y=sinc(-3) returns 0.047,

y=sinc(3+4%*i) returns -3.86-j3.86.

See also

sin()

78

step()

Step function.
Syntax
y=step(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function calculates the step function of a real or complex number or vector. For z € R,

0 forx<O
y=< 05 forz=0
1 forx>0

If x is a complex number both real part and imaginary part are subjected to the equation
above. For z being a vector the equation is applied to the components of z.

Example

y=step(0.5) returns 1.

See also

79

Data Analysis

Basic Statistics

avg()

Average of vector elements.
Syntax
y—avg(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,C R",C", Range s : we | |—o00, +00] | V |

Description

This function returns the sum of the elements of a real or complex vector or range.

For x eC™: y = 1 éxi, 1 <i < n (for vectors) or s < i < xe (for ranges)
For z being a real or complex number, z itself is returned.

Example

y=avg(linspace(1,3,10)) returns 2.

See also

sum(), max(), min()

80

cumavg()

Cumulative average of vector elements.
Syntax

y=cumavg(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +o0] ‘ v ‘
Description

This function returns the cumulative average of the elements of a real or complex vector.
1 k
For z €C": y, :Ein, 1<k<n
i=1
For z being a real or complex number, z itself is returned.
Example
y=cumavg(linspace(1,3,3)) returns 1, 1.5, 2.
See also

cumsum(), cumprod(), avg(), sum(), prod(), max(), min()

81

max()

Maximum value.

Syntax
y=max(X)
y=max(a,b)
Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X \ R, C, R", C", Range zs : ze \ |—00, +00] \ vV ‘
a R, C] —00, +00] Vi
b Ra C]_007 +OO[\/
Description

For the first syntax (y=max(x)), this function returns the maximum value of a real or
complex vector or range.

For z eR™ y =max (z;), 1 <i <n (for vectors) or xs < i < ze (for ranges)

For z € C™: y = max (£ |z;]), 1 <1i < n (for vectors) or s < i < ze (for ranges),

N <@
with sign { + for |arg (z;)| < 2
— else

For x being a real or complex number: that is the case n = 1.

The second syntax (y=max(a,b)) finds application, if two (generally complex) numbers a
and b need to be compared. In principle, the maximum of the absolute values is selected,
but it must be considered whether a and b are located in the right or left complex half
plane. If the latter is the case, the negative absolute value of a and b needs to be regarded
(for example, which is the case for negative real numbers), otherwise the positive absolute
value is taken:

82

y = max (+|a] , + [b]),

+ for |arg(a)] < 7§

<
with |a| sign { + for larg (b)] < 3
— else

and |b| sign { C lse

Example

y=max(linspace(1,3,10)) returns 3.
y=max(1,3) returns 3.
y=max(1,1+i) returns 1+jl.

y=max(1,-1+i) returns 1.
See also

min(), abs()

83

min()

Minimum value.

Syntax
y=min(x)
y=min(a,b)
Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X \ R, C, R", C", Range zs : ze \ |—00, +00] \ vV ‘
a R, C] —00, +00] Vi
b Ra C]_007 +OO[\/
Description

For the first syntax (y=min(x)), this function returns the minimum value of a real or
complex vector or range.

For z €R™ y =min (z;), 1 <i <n (for vectors) or xs < i < xe (for ranges)

For z € C™: y = min (& |z;]), 1 < i < n (for vectors) or s < i < xe (for ranges),

) < =
with sign { + for |arg (z;)] < 9
— else

For x being a real or complex number: that is the case n = 1.

The second syntax (y=min(a,b)) finds application, if two (generally complex) numbers a
and b need to be compared. In principle, the maximum of the absolute values is selected,
but it must be considered whether a and b are located in the right or left complex half
plane. If the latter is the case, the negative absolute value of a and b needs to be regarded
(for example, which is the case for negative real numbers), otherwise the positive absolute
value is taken:

84

y = min (£ |, £ [b]),

+ for |arg(a)] < 7§

<
with |a| sign { + for larg (b)] < 3
— else

and |b| sign { C lse

Example

y=min(linspace(1,3,10)) returns 1.
y=min(1,3) returns 1.
y=min(1,1+i) returns 1.

y=min(1,-1+i) returns -1+jl.
See also

max(), abs()

85

rms|()

Root Mean Square of vector elements.
Syntax
y=rms(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function returns the rms (root mean square) value of the elements of a real or complex
vector. By application of the trapezoidal integration rule,

n 1 for2<:<n-1
n. — L.k <1 < .= L.
for z €C Y izzlalexw 1_2_7’L, a; { % forr=1ori=n

For z being a real or complex number, |z| itself is returned.

S|

Example

y=rms (linspace(1,2,8)) returns 1.43.

See also

variance(), stddev(), avg()

86

runavg()

Running average of vector elements.
Syntax

y=runavg(x,m)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
X R, C, R*, C" | |—o0, 400 v
m N [1, +o0] V
Description

This function returns the running average over m elements of a real or complex vector.
1 k+tm—1

For z €C™ yp=— > x;,1<k<n
m- =g

For x being a real or complex number, z itself is returned.

Example

y=runavg(linspace(1,3,6),2) returns 1.2, 1.6, 2, 2.4, 2.8.

See also

cumavg(), cumsum(), avg(), sum()

87

stddev()

Standard deviation of vector elements.
Syntax

y=stddev(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +o0] ‘ v ‘
Description

This function returns the stddev of the elements of a real or complex vector z.
For z €C": y =y/variance(x)

For x being a real or complex number, 0 is returned.

Example

y=stddev(linspace(1,3,10)) returns 0.673.

See also

stddev(), avg(), max(), min()

88

variance()

Variance of vector elements.
Syntax

y=variance(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +o0] ‘ v ‘
Description

This function returns the variance of the elements of a real or complex vector.

1

n
’I’L—lizl

For x €C™": y = (z; — T)?, where T denotes mean (average) value of z.
For x being a real or complex number, 0 is returned.

Example

y=variance(linspace(1,3,10)) returns 0.453.

See also

stddev(), avg(), max(), min()

89

Basic Operation

cumprod()

Cumulative product of vector elements.
Syntax

y=cumprod(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
’ X \ R, C, R", C" \ |—00, +00] \ vV ‘
Description

This function returns the cumulative product of the elements of a real or complex vector.
k

For z €C™ yp =[]z, 1 <k <n
i=1

For x being a real or complex number, z itself is returned.

Example

y=cumprod(linspace(1,3,3)) returns 1, 2, 6.

See also

cumsum(), cumavg(), prod(), sum(), avg(), max(), min()

90

cumsumy()

Cumulative sum of vector elements.
Syntax

y=cumsum(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +o0] ‘ v ‘
Description

This function returns the cumulative sum of the elements of a real or complex vector.
k

For z €C": y, :in, 1<k<n
i=1

For x being a real or complex number, z itself is returned.

Example

y=cumsum(linspace(1,3,3)) returns 1, 3, 6.

See also

cumprod(), cumavg(), sum(), prod(), avg(), max(), min()

91

interpolate()

Equidistant spline interpolation of data vector.
Syntax

z=interpolate(y,t,m)

z=interpolate(y,t)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘

y R™ C" | |—o0,+00] vV

t R™, C" | |—o0,+00] vV

m N 3, +o0[64
Description

This function uses spline interpolation to interpolate between the points of a vector y(t).
If the number of samples n is not specified, a default value of n = 64 is assumed.

Example

z=interpolate(linspace(0,2,3)*1linspace(0,2,3),linspace(0,2,3))

returns a smooth parabolic curve:

Use the Cartesian diagram to display it.

See also

sum(), prod()

92

|

I
0 0.5 1 1.
Interpolate.0001

o
N

Figure 4: Interpolated curve

prod ()

Product of vector elements.
Syntax
y=prod(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,CR,C"|]-oo,400[| |

Description

This function returns the product of the elements of a real or complex vector.
n

For z €C™: y =[] =
i=1

For z being a real or complex number, z itself is returned.

93

Example

y=prod(linspace(1,3,10)) returns 583.

See also

sum(), avg(), max(), min()

94

sum()

Sum of vector elements.
Syntax
y=sum(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function returns the sum of the elements of a real or complex vector.

For z €C"™: y :an T
i=1
For x being a real or complex number, z itself is returned.
Example
y=sum(linspace(1,3,10)) returns 20.

See also

prod(), avg(), max(), min()

95

xvalue()

Returns x-value which is associated with the y-value nearest to a specified
y-value in a given vector.

Syntax

x=xvalue(f,yval)

Arguments

\ Name \ Type \ Def. Range \ Required \

f R™ C" | |—o0,+00| V
yval | R, C | |—o0,+00] v
Description

This function returns the z-value which is associated with the y-value nearest to ywval in
the given vector f; therefore the vector f must have a single data dependency.

Example

x=xvalue(f,1).

See also

yvalue(), interpolate()

96

yvalue()

Returns y-value of a given vector which is located nearest to the specified
x-value.

Syntax
y=yvalue(f,xval)

Arguments

\ Name \ Type \ Def. Range \ Required \

f R™ C" | |—o0,+00| V
xval | R, C | |—o0,+00] v
Description

This function returns the y-value of the given vector f which is located nearest to the
x-value zval; therefore the vector f must have a single data dependency.

Example

y=yvalue(f,1).

See also

xvalue(), interpolate()

97

Differentiation and Integration

diff()

Differentiate vector with respect to another vector.
Syntax

z=diff(y,x,n)

Arguments

’ Name \ Type \ Def. Range \ Required \ Default ‘

y Rku (Ck]_007 +OO[\/

x | R™ C™| |—o0,400| vV

n N 1
Description

This function numerically differentiates a vector y with respect to a vector x. If the optional
integer parameter n is given, the n-th derivative is calculated. Differentiation is executed
for N=min(k,m) elements. For n=1,

(1 (yi—yr | Y-y |
_(yz Yist | Yin y) for N 154> 0
2\ 1 — 1w Tit1 — X4
Ay; _ Yit1 — Yi fori =0
A.Z'i Tir1 — Ty
Yim Y fori=N—-1
\ Ty — XTj—1

If n>1, the result of the differentiation above is assigned to y and the aforementioned
differentiation step is repeated until the number of those steps is equal to n.

Example

z=diff (linspace(1,3,3),linspace(2,3,3)) returns 2, 2, 2.
See also

integrate(), sum(), max(), min()

98

integrate()

Integrate vector.
Syntax

z=integrate(y,h)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
y R, C, R*, C" | |—o0, 400 Vv
h R, C]—00, +00] V
Description

This function numerically integrates a vector x with respect to a differential h. The inte-
gration method is according to the trapez rule:

ff(t)dt%h <%—|—y1+y2+...+yn_1+%")

Example

3
Calculate an approximation of the integral [¢dt using 105 points:
1

z=integrate(linspace(1,3,105)*1linspace(1,3,105),0.02) returns 4.
See also

diff(), sum(), max(), min()

99

Signal Processing

dft ()

Discrete Fourier Transform.
Syntax
y=dft(v)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| v |[R%,C"|]-oo,400[| |

Description

This function computes the Discrete Fourier Transform (DFT) of a vector v. The advantage
of this function compared to fft() is that the number n of components of v is arbitrary,
while for the latter n must be a power of 2. The drawbacks are that dft() is slower and
less accurate than fft().

Example

This calculates the spectrum y of a DC signal:

| y
1
y=dft (linspace(1,1,7)) returns | -1.59e-17+j1.59e-17

2.22e-16-j1.11e-16

Please note that in this example 7 points are used for the time vector v. Since 7 is not a
power of 2, the same expression used together with the fft() function would lead to wrong
results. Note also the rounding errors where “0” would be the correct value.

See also
idft(), fft(), ifft(), Freq2Time(), Time2Freq()

100

fft ()

Fast Fourier Transform.
Syntax

y=ttt(v)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| v |R",C"[]—o0,400[| Vi |

Description

This function computes the Fast Fourier Transform (FFT) of a vector v. The number n of
components of v must be a power of 2.

Example

This calculates the spectrum y of a DC signal:

1
y=fft(linspace(1,1,8)) returns| 0

See also

ifft(), dft(), idft(), Freq2Time(), Time2Freq()

101

idft()

Inverse Discrete Fourier Transform.
Syntax
y=idft(v)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| v |R,C"|]-oo,400o[| |

Description

This function computes the Inverse Discrete Fourier Transform (IDFT) of a vector v. The
advantage of this function compared to ifft() is that the number n of components of v is
arbitrary, while for the latter n must be a power of 2. The drawbacks are that idft() is
slower and less accurate than ifft().

Example

This calculates the time function y belonging to a white spectrum:

| y |
7
y=idft (linspace(1,1,7)) returns| -1.11e-16-j1.11e-16

1.55¢-1547.77¢-16

Please note that in this example 7 points are used for the spectrum vector v. Since 7 is
not a power of 2, the same expression used together with the ifft() function would lead to
wrong results. Note also the rounding errors where “0” would be the correct value.

See also

dft(), ifft(), fft(), Freq2Time(), Time2Freq()

102

ifft ()
Inverse Fast Fourier Transform.
Syntax
y=ifft(v)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| v |R",C"[]—o0,400[| Vi |

Description

This function computes the Inverse Fast Fourier Transform (IFFT) of a vector v. The
number n of components of v must be a power of 2.

Example

This calculates the time function y belonging to a white spectrum:

8
y=ifft(linspace(1,1,8)) returns| 0

See also

ftt(), dft(), idft(), Freq2Time(), Time2Freq()

103

Time2Freq()

Interpreted Discrete Fourier Transform.
Syntax
y=Time2Freq(v,t)

Arguments

’ Name \ Type \ Def. Range \ Required ‘

v R™, C" | |—o0,+o0| V
t R*, CF |]—o0, +o0| V
Description

This function computes the Discrete Fourier Transform (DFT) of a vector v with respect
to a time vector ¢.

Example
This calculates the spectrum y(f) of a DC signal:

y=Time2Freq(linspace(1,1,7),linspace(0,1,2)) returns

’ Frequency \ y ‘
0 1
0.167 -1.59e-17+4j1.59e-17

1 2.22e-16-j1.11e-16

Please note that in this example 7 points are used for the time vector v. Note also the
rounding errors at t>0, where “0” would be the correct value.

See also

idft(), ftt(), ifft(), Freq2Time()

104

Freq2Time()

Interpreted Inverse Discrete Fourier Transform.
Syntax
y=Freq2Time(v,f)

Arguments

’ Name \ Type \ Def. Range \ Required ‘

v R™, C" | |—o0,+o0| V
f R*, CF |]—o0, +o0| V
Description

This function computes the Inverse Discrete Fourier Transform (IDFT) of a vector v with
respect to a frequency vector f.

Example
This calculates the time function y(t) belonging to a white spectrum:

y=Freq2Time(linspace(1,1,7),linspace(0,1,2)) returns

’ Frequency \ y ‘
0 7
0.167 -1.11e-16-j1.11e-16

1 1.55e-15+j7.77e-16

Please note that in this example 7 points are used for the spectrum vector v. Note also
the rounding errors at t>0, where “0” would be the correct value.

See also

dft(), ifft(), fft(), Time2Freq()

105

kbd ()

Kaiser-Bessel derived window.
Syntax

y=kbd(a,n)

y=kbd(a)

Arguments

’ Name \ Type \ Def. Range \ Required \ Default ‘

a R |—00, +00] V
n N [1, +o0] 64
Description

This function generates a Kaiser-Bessel window according to

iozo(m.h_(%_l))
e

U = |
2
> Io)
1=0

Yn—k—1 = Yk

for0§k<%

If the parameter n is not specified, n=64 is assumed.
Example

y=kbd (0.1,4) returns .

See also

dft(), ifft(), fft()

106

Electronics Functions

Unit Conversion

dB()

dB value.
Syntax
y=dB(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C,R",C"|]—o00,4o00[| v]

Description

This function returns the dB value of a real or complex number or vector.
y = 20 log |x|

For z being a vector the equation above is applied to the components of x.

Example

y=db(10) returns 20.

See also

log10()

107

dbm()

Convert voltage to power in dBm.
Syntax

y=dBm(u,Z0)

y=dBm(u)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
u R, C, R*, C" | |—o0, 400 v
Z0 | R, C,R", C" | |—o0,+o0] 50

Description

This function returns the corresponding dBm power of a real or complex voltage or vector
u. The impedance Z0 referred to is either specified or 50¢).

Jul”

— 10 log — 4
y & Z,0.001

For u being a vector the equation above is applied to the components of u.

Please note that u is considered as a rms value, not as an amplitude.
Example

y=dbm(1) returns 13.

See also

dbm2w(), w2dbm(), log10()

108

dbm2w ()

Convert power in dBm to power in Watts.
Syntax

y=dBm2w(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description

This function converts the real or complex power or power vector, given in dBm, to the
corresponding power in Watts.

y = 0.001 1070

For x being a vector the equation above is applied to the components of z.
Example

y=dbm2w (10) returns 0.01.

See also

dbm(), w2dbm()

109

w2dbm()

Convert power in Watts to power in dBm.
Syntax

y=w2dBm(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C" |]-o0,400[| v]

Description
This function converts the real or complex power or power vector, given in Watts, to the
corresponding power in dBm.

T

0.001W

y = 10 log

For x being a vector the equation above is applied to the components of z.

Example

y=w2dbm(1) returns 30.

See also

dbm(), dbm2w(), log10()

110

Reflection Coefficients and VSWR

rtoswr()

Converts reflection coefficient to voltage standing wave ratio (VSWR).
Syntax

s=rtoswr(r)

Arguments
\ Name \ Type \ Def. Range \ Required \
| r |[RCR,C'| <1 | v]
Description

For a real or complex reflection coefficient r, this function calculates the corresponding
voltage standing wave ratio (VSWR) s according to

VSWR is a real number and if usually given in the notation “s : 1.

For r being a vector the equation above is applied to the components of r.

Examples

s=rtoswr (0) returns 1.

s=rtoswr(0.1+0.2%i) returns 1.58.

See also

ytor(), ztor(), rtoy(), rtoz()

111

rtoy()

Converts reflection coefficient to admittance.

Syntax

y=rtoy(r)

y=rtoy(r, Z0)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
r R, C, R™, C" Ir] <1 vV
Z0 R, C |—00, +00] 50
Description

For a real or complex reflection coefficient r, this function calculates the corresponding
admittance y according to

B 1 1—r
_Zol—FT

Y

If the reference impedance Z0 is not provided, the function assumes Z0 = 50¢).

For r being a vector the equation above is applied to the components of r.

Example

y=rtoy(0.333) returns 0.01.

See also

ytor(), ztor(), rtoswr()

112

rtoz()

Converts reflection coefficient to impedance.
Syntax

z=rtoz(r)

z=rtoz(r, Z0)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
r R, C, R™, C" Ir] <1 vV
Z0 R, C |—00, +00] 50
Description

For a real or complex reflection coefficient r, this function calculates the corresponding
impedance Z according to

1—17r

7 = Z
147

If the reference impedance Z0 is not provided, the function assumes Z0 = 50().

For r being a vector the equation above is applied to the components of .

Example

z=rt0z(0.333) returns 99.9.

See also

ztor(), ytor(), rtoswr()

113

ytor()

Converts admittance to reflection coeflicient.
Syntax

r=ytor(Y)

r=ytor(Y, Z0)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
Y R, C, R*, C" | |—o0, 400 V
Z0 R, C |—00, +00] 50
Description

For a real or complex admittance y, this function calculates the corresponding reflection
coefficient according to

1-Y 4
"Tirv 2z

For Y being a vector the equation above is applied to the components of Y.
If the reference impedance Z0 is not provided, the function assumes Z0 = 50().

Often a dB measure is given for the reflection coefficient, the so called “return loss”

RL = —20 log |r| [dB]
Example

r=ytor(0.01) returns 0.333.
See also

rtoy(), rtoz(), rtoswr(), logl0(), dB()

114

ztor()

Converts impedance to reflection coefficient.
Syntax

r=ztor(Z)

r=ztor(Z, Z0)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
7 R, C, R*, C" | |—o0, 400 V
Z0 R, C |—00, +00] 50
Description

For a real or complex impedance Z, this function calculates the corresponding reflection
coefficient according to

77
"T 717

For Z being a vector the equation above is applied to the components of Z.
If the reference impedance Z0 is not provided, the function assumes Z0 = 50().
Often a dB measure is given for the reflection coefficient, the so called “return loss”

RL = —20 log |r| [dB]
Example

r=ztor (100) returns 0.333.
See also

rtoz(), rtoy(), rtoswr(), log10(), dB()

115

N-Port Matrix Conversions
stos()

Converts S-parameter matrix to S-parameter matrix with different reference
impedance(s).

Syntax

y=stos(S, Zref)

y=stos(S, Zref, Z0)

Arguments
\ Name \ Type \ Def. Range \ Required \ Default \
nxn nxn |SZ]| G]_OO’+OO[7 1 S%]Sn
5 R, € 1Sil <1, 1<i<n v
Zref | R, C, R™, C" |—00, +00] Vv
20 | R,C,R™ C" |—00, +00] 50

Description

This function converts a real or complex scattering parameter matrix S into a scattering
matrix Y. S has a reference impedance Zref, whereas the created scattering matrix Y has
a reference impedance Z0.

If the reference impedance Z0 is not provided, the function assumes Z0 = 505).

Both Zref and Z0 can be real or complex numbers or vectors; in the latter case the function
operates on the elements of Zref and Z0.

Example

Conversion of 50§) terminated S-parameters to 100€2 terminated S-parameters:

-0.241 0
0 -0.241 |

S2=stos(eye(2)*0.1,50,100) returns

116

See also

twoport(), stoy(), stoz()

117

stoy ()

Converts S-parameter matrix to Y-parameter matrix.
Syntax

Y=stoy(S)

Y=stoy(S, Zref)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
nxn CMmxXn |SZJ| E]—OO,—‘;—OO[, 1<u,7<n
> R € 196 <1, 1<i<n v
Zref | R, C, R", C" |—00, +00] 50

Description

This function converts a real or complex scattering parameter matrix S into an admittance
matrix Y. S has a reference impedance Zref, which is assumed to be Zref = 502 if not
provided by the user.

Zref can be real or complex number or vector; in the latter case the function operates on
the elements of Zref.

Example

0.00818 0

Y=stoy(eye(2)*0.1,100) returns 0 0.00818 |

See also

twoport(), stos(), stoz(), ytos()

118

stoz()

Converts S-parameter matrix to Z-parameter matrix.

Syntax

Z=stoz(S)

Z=stoz(S, Zref)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
nxn CMmxXn |SZJ| E]—OO,—‘;—OO[, 1<u,7<n
> R € 196 <1, 1<i<n v
Zref | R, C, R", C" |—00, +00] 50

Description

This function converts a real or complex scattering parameter matrix S into an impedance
matrix Z. S has a reference impedance Zref, which is assumed to be Zref = 50€) if not
provided by the user.

Zref can be real or complex number or vector; in the latter case the function operates on
the elements of Zref.

Example

122 1 0
0 [122]

Z=stoz(eye(2)*0.1,100) returns

See also

twoport(), stos(), stoy(), ztos()

119

twoport()

Converts a two-port matrix from one representation into another.
Syntax

U=twoport(X, from, to)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
X szz7 C2x2]—oo,—i—oo[\/

from | Character | {'Y' 'Z' 'H' 'G','A",'S" 'T"} V
to Character | {'Y' 'Z' 'H' 'G','A",'S", 'T"} V

Description

This function converts a real or complex two-port matrix X from one representation into
another.

Example

Transfer a two-port Y matrix Y1 into a Z matrix:

Yi=eye(2)*0.1

10 O
Z1=twoport(Y1,’Y’,’Z’) returns

See also

stos(), ytos(), ztos(), stoz(), stoy(), ytoz(), ztoy()

120

ytos()

Converts Y-parameter matrix to S-parameter matrix.
Syntax

S=ytos(Y)

S=ytos(Y, Z0)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
Y]Rnxn7 Cnxn]—OO7+OO[\/
Z0 | R, C,R", C" | |—o0,+o0] 20
Description

This function converts a real or complex admittance matrix Y into a scattering parameter
matrix S. Y has a reference impedance Z0, which is assumed to be Z0 = 5012 if not provided
by the user.

Z0 can be real or complex number or vector; in the latter case the function operates on
the elements of Z0.

Example

-0.818 0
0 -0.818 |

S=ytos(eye(2)*0.1,100) returns

See also

twoport(), stos(), ztos(), stoy()

121

ytoz()

Converts Y-parameter matrix to Z-parameter matrix.
Syntax

Z=ytoz(Y)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ Y ‘R"X”, crxn ‘ |—00, +00] ‘ V ‘

Description

This function converts a real or complex admittance matrix Y into an impedance matrix

Z.

Example

1
Z=ytoz(eye(2)*0.1) returns 00

See also

twoport(), ztoy()

122

ztos()

Converts Z-parameter matrix to S-parameter matrix.
Syntax

S=ztos(Z)

S=ztos(Z, Z0)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
7]Rnxn7 Cnxn]—OO7+OO[\/
Z0 | R, C,R", C" | |—o0,+o0] 20
Description

This function converts a real or complex impedance matrix Z into a scattering parameter
matrix S. Z has a reference impedance Z0, which is assumed to be Z0 = 5012 if not provided
by the user.

Z0 can be real or complex number or vector; in the latter case the function operates on
the elements of Z0.

Example

-0.998 0
0 -0.998 |

S=ztos(eye(2)*0.1,100) returns

See also

twoport(), twoport(), stos(), ytos(), stoz()

123

ztoy ()

Converts Z-parameter matrix to Y-parameter matrix.
Syntax

Y=ztoy(Z)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ Z ‘R"X”, crxn ‘ |—00, +00] ‘ V ‘

Description

This function converts a real or complex impedance matrix Z into an admittance matrix

Y.

Example

10 0

Y=ztoy(eye(2)*0.1) returns

See also

twoport(), ytoz()

124

Amplifiers

GacCircle()

Circle(s) with constant available power gain Ga in the source plane.

Syntax

y=GaCircle(X,Ga,v)
y=GaCircle(X,Ga,n)

y=GaCircle(X,Ga)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
X R2><2><p’ (C2><2><p]—OO,—i—OO[\/
v R™ [0, 360]°
Ga R, R™ [0, +o00[vV
n N 2, +00[64
Description

This function generates the points of the circle of constant available power gain G4 in
the complex source plane (rg) of an amplifier. The amplifier is described by a two-port
S-parameter matrix S. Radius r and center ¢ of this circle are calculated as follows:

\/1 ~2-K-ga-|S1280]| + ¢4 |SiaSu|?

ga (S7; — Sx AY)
d _
1+ g1 (1Sul = [AP)] anc e

C 14ga (ISul’ = AP

r =

G
where g4 = ﬁ and K Rollet stability factor. A denotes determinant of S.
21

The points of the circle can be specified by the angle vector v, where the angle must be given
in degrees. Another possibility is to specify the number n of angular equally distributed
points around the circle. If no additional argument to X is given, 64 points are taken. The

125

available power gain can also be specified in a vector Ga, leading to the generation of m
circles, where m is the size of Ga.

Please also refer to “Qucs - Technical Papers”, chapter 1.5.

Example

v=GaCircle(S)

See also

GpCircle(), Rollet()

126

GpCircle()

Circle(s) with constant operating power gain Gp in the load plane.
Syntax

y=GpCircle(X,Gp,v)
y=GpCircle(X,Gp,n)

y=GpCircle(X,Gp)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
X R2><2><p’ (C2><2><p]_007_{_00[\/
v R" [0, 360]°
Gp R, R™ [0, 00| A
n N 2, +00] 64
Description

This function generates the points of the circle of constant operating power gain Gp in
the complex load plane (rp) of an amplifier. The amplifier is described by a two-port
S-parameter matrix S. Radius r and center ¢ of this circle are calculated as follows:

_ \/1 —2-K-gp- |S129:1] + g% |S1291/° ga (S5 — S11 A7)

and ¢ =)
|1+9P' (\522’2— |A|2)} I+gp (|522’2— |A’2)

r

G
where g4 = S—P? and K Rollet stability factor. A denotes determinant of S.
21

The points of the circle can be specified by the angle vector v, where the angle must be given
in degrees. Another possibility is to specify the number n of angular equally distributed
points around the circle. If no additional argument to X is given, 64 points are taken. The
available power gain can also be specified in a vector Gp, leading to the generation of m
circles, where m is the size of Gp.

Please also refer to “Qucs - Technical Papers”, chapter 1.5.

127

Example

v=GpCircle(S)

See also

GaCircle(), Rollet()

128

Mu()

Mu stability factor of a two-port S-parameter matrix.
Syntax

y=Mu(S)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ S ‘ R2><2><p7 (CQXQXP,R2X2, (C2><2 ‘]—OO,+OO[‘ \/ ‘

Description

This function returns the Mu stability factor u of an amplifier being described by a two-port
S-parameter matrix S

_ 1—[S [
|Sae — S5, Al + | S21 S12]

W

A denotes determinant of S.
The amplifier is unconditionally stable if p > 1.

For S being a vector of matrices the equation above is applied to the sub-matrices of S.

Example

m=Mu(S)

See also

Mu2(), Rollet(), StabCircleS(), StabCircleL()

129

Mu2()

Mu’ stability factor of a two-port S-parameter matrix.
Syntax

y=Mu2(S)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ S ‘ R2><2><p7 (CQXQXP,R2X2, (C2><2 ‘]—OO,+OO[‘ \/ ‘

Description

This function returns the Mu’ stability factor x4’ of an amplifier being described by a two-
port S-parameter matrix S:

_ 1 — |Sa|?
|S11 — S5 Al + |S21 S12]

!/

W

A denotes determinant of S.
The amplifier is unconditionally stable if p/ > 1.

For S being a vector of matrices the equation above is applied to the sub-matrices of S.

Example

m=Mu2(S)

See also

Mu2(), Rollet(), StabCircleS(), StabCircleL()

130

NoiseCircle()

Generates circle(s) with constant Noise Figure(s).
Syntax

y=NoiseCircle(Sopt,Fmin,Rn,F v)
y=NoiseCircle(Sopt,Fmin,Rn,F n)

y=NoiseCircle(Sopt,Fmin,Rn,F)

Arguments

’ Name \ Type \ Def. Range \ Required \ Default ‘

Sopt | R™, C" | |—o0, +o0| V
Fmin R™ 1, +00] V
Rn | R", C” [0, —I—oo[V
F R, R" [1, +00] V
v R" 0, 360]°
n N 2, +o00] 64
Description

This function generates the points of the circle of constant Noise Figure (NF) F' in the
complex source plane (rg) of an amplifier. Generally, the amplifier has its minimum NF
Foin, if the source reflection coefficient rg = S, (noise matching). Note that this state
with optimum source reflection coefficient S, is different from power matching ! Thus
power gain under noise matching is lower than the maximum obtainable gain. The values
of Sopt, Frninand the normalised equivalent noise resistance R,,/Zycan be usually taken from
the data sheet of the amplifier.

Radius 7 and center ¢ of the circle of constant NF are calculated as follows:

N2 4+ N- (1—1Sy.|° S, F — Fii
\/ (- pt‘)andc: opt WithN:—mm'ZO'|1+S"Pt|2

"= T+ N 1+ N’ iR,

The points of the circle can be specified by the angle vector v, where the angle must be given
in degrees. Another possibility is to specify the number n of angular equally distributed
points around the circle. If no additional argument to X is given, 64 points are taken.

131

Please also refer to “Qucs - Technical Papers”, chapter 2.2.

Example

v=NoiseCircle(Sopt,Fmin,Rn,F)

See also

GaCircle(), GpCircle()

132

PlotVs()

Returns a data item based upon vector or matrix vector with dependency on
a given vector.

Syntax

y=PlotVs(X, v)

Arguments
] Name \ Type \ Def. Range \ Required ‘
X Rn’ Cn) IRanXp7 Cmxnxp]—OO, +OO[\/
v R™, C™ |—00, +00] V
Description

This function returns a data item based upon a vector or matrix vector X with dependency
on a given vector v.

Example

PlotVs(Gain,frequency/1E9).

See also

133

Rollet()

Rollet stability factor of a two-port S-parameter matrix.

Syntax

y=Rollet(S)

Arguments
] Name \ Type \ Def. Range \ Required ‘
’ S ‘ R2><2><p, C2X2XP,R2X2, (C2><2 ‘]—OO,+OO[‘ \/ ‘
Description

This function returns the Rollet stability factor K of an amplifier being described by a
two-port S-parameter matrix S:

P [S1a]* = [Saa]* + A
2 [Sa1] |S1z]

A denotes determinant of S.
The amplifier is unconditionally stable if K > 1 and |A| < 1.

Note that a large K may be misleading in case of a multi-stage amplifier, pretending
extraordinary stability. This is in conflict with reality where a large gain amplifier usually
suffers from instability due to parasitics.

For S being a vector of matrices the equation above is applied to the sub-matrices of S.

Example

K=Rollet(S)

See also

Mu(), Mu2(), StabCircleS(), StabCircleL()

134

StabCircleL()

Stability circle in the load plane.
Syntax

y=StabCircleL(X)
y=StabCircleL(X,v)

y=StabCircleL(X,n)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
X R2><2><p7 (C2><2><p]_007_’_00[\/
A\ R™ [0, 360]°
n N 2, +00] 64
Description

This function generates the stability circle points in the complex load reflection coefficient
(rr) plane of an amplifier. The amplifier is described by a two-port S-parameter matrix .
Radius r and center c¢ of this circle are calculated as follows:

521 512

o S, — Spp - A
|Saa|” — |A[

c= = —
|Sa|* — | A

an

A denotes determinant of S.

The points of the circle can be specified by the angle vector v, where the angle must be given
in degrees. Another possibility is to specify the number n of angular equally distributed
points around the circle. If no additional argument to X is given, 64 points are taken.

If the center of the rplane lies within this circle and |[Si;| < 1 then the circuit is stable
for all reflection coefficients inside the circle. If the center of the ryplane lies outside the
circle and |S11| < 1 then the circuit is stable for all reflection coefficients outside the circle
(please also refer to “Qucs - Technical Papers”, chapter 1.5).

135

Example

v=StabCircleL(S)

See also

StabCircleS(), Rollet(), Mu(), Mu2()

136

StabCircleS()

Stability circle in the source plane.
Syntax

y=StabCircleS(X)
y=StabCircleS(X,v)

y=StabCircleS(X,n)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
X R2><2><p7 (C2><2><p]_007_’_00[\/
A\ R™ [0, 360]°
n N 2, +00] 64
Description

This function generates the stability circle points in the complex source reflection coefficient
(rs) plane of an amplifier. The amplifier is described by a two-port S-parameter matrix .
Radius r and center c¢ of this circle are calculated as follows:

521 512

. St — Sy A
1Sul* — |A]?

C= ———MMM
[Sul* AP

an

A denotes determinant of S.

The points of the circle can be specified by the angle vector v, where the angle must be given
in degrees. Another possibility is to specify the number n of angular equally distributed
points around the circle. If no additional argument to X is given, 64 points are taken.

If the center of the rgplane lies within this circle and |Ss| < 1 then the circuit is stable
for all reflection coefficients inside the circle. If the center of the rgplane lies outside the
circle and |Ss2| < 1 then the circuit is stable for all reflection coefficients outside the circle
(please also refer to “Qucs - Technical Papers”, chapter 1.5).

137

Example

v=StabCircleS(S)

See also

StabCircleL(), Rollet(), Mu(), Mu2()

138

A D

abs. 23 dB. .. 107

adjoint............ i 17 dbm ... 108

angle. ... 24 dbm2w. 109

ATCCOS « + vttt ettt e et 52 deg2rad 28

ArcCob . .o B3 det. ..o 20

arcosh. 63 dft.......o 100

arcoth. 64 diff....... . 98

ATCSINL . .ot 54

arctan.............. .. 55 E

BT o 20 o 74

AITAY - e 18 erfc... .o 75

arsinh 65 orfeiny 77

artanh 66 orfinv 76

AV ottt 80 XD oo e 49

B BV € e 13

besseliO ..o 71 F

besselj ... 72 & 101

bessely........oo i 73 fix 68

C Hoor ... 69
Freq2Time.............., 105

ceil. ..o 67

6703 0 P 97 G

COS .t ettt e 46 CGaCircle 195

COSEC . v et e et et e 47 GpCircle. ... oo 197

cosech.. 58

cosh. ... o 57 1

COb e 48

coth. 59 16 § i P 102

CUTNAVE « + + e e oo g1 Mt 103

CUMPIOd . . oot Q0 IMAZ. ... 29

CUINSUILL. o+ o+ oo oo g1 Integrate.............. 99
interpolate 92

139

K SBC .+ e ettt 49
sech.o 60

kbd]_ 06 Sign 38

L SIGNUIM . . vvvv ettt ettt e e 37
S0 50

linspace....... ... 15 SINC ..o 78

In. .o 45 sinh....... 61

loglO. ..o A3 ST ettt 39

log2. .o 44 Sqrb. ..o 40

logspace. 16 StabCircleL............ 135
StabCircleS............................ 137

M stddev 88
StED 79

G e 3 SEOS .+ et 116

INAX .« ettt 82

. SEOY . oo 118

1001 0 84

Mu 199 SEOZ . v 119

MU 130 SUI. oo 95

N T

NoiseCircle. ..., 131 BAIL: e ol

1010 151 0 [P P 31 BanhL. - 62
Time2Freq ... 104

P transpose 22
twoport 120

phase 32

PlotVs..oooooi i 133 U

polar...... 34

prodo g3 WHWIAD - 4

R A%

rad2deg . . 35 VaATTANCE . . oo 89

real ... 36 W

1001 86

Rollet. ... 134 w2dbm...... ... 110

TOUNd ..ot 70

TEOSWT oot 111 X

TBOY .. L2 value. oo 96

TEOZ . oo 113

TUILAVE « « e ettt e eee et e e e 87 Y
yEOr. .o 114

VEOZ 122
yvalue. ... o 97
Z

ZEOT o oot 115
ZE0S o e 123
/1170) 124

141

